Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

Leveraging Auxiliary Text for Deep Recognition of Unseen Visual Relationships

Oct 27, 2019
Gal Sadeh Kenigsfield, Ran El-Yaniv

One of the most difficult tasks in scene understanding is recognizing interactions between objects in an image. This task is often called visual relationship detection (VRD). We consider the question of whether, given auxiliary textual data in addition to the standard visual data used for training VRD models, VRD performance can be improved. We present a new deep model that can leverage additional textual data. Our model relies on a shared text--image representation of subject-verb-object relationships appearing in the text, and object interactions in images. Our method is the first to enable recognition of visual relationships missing in the visual training data and appearing only in the auxiliary text. We test our approach on two different text sources: text originating in images and text originating in books. We test and validate our approach using two large-scale recognition tasks: VRD and Scene Graph Generation. We show a surprising result: Our approach works better with text originating in books, and outperforms the text originating in images on the task of unseen relationship recognition. It is comparable to the model which utilizes text originating in images on the task of seen relationship recognition.

  Access Paper or Ask Questions

TeLCoS: OnDevice Text Localization with Clustering of Script

Apr 21, 2021
Rachit S Munjal, Manoj Goyal, Rutika Moharir, Sukumar Moharana

Recent research in the field of text localization in a resource constrained environment has made extensive use of deep neural networks. Scene text localization and recognition on low-memory mobile devices have a wide range of applications including content extraction, image categorization and keyword based image search. For text recognition of multi-lingual localized text, the OCR systems require prior knowledge of the script of each text instance. This leads to word script identification being an essential step for text recognition. Most existing methods treat text localization, script identification and text recognition as three separate tasks. This makes script identification an overhead in the recognition pipeline. To reduce this overhead, we propose TeLCoS: OnDevice Text Localization with Clustering of Script, a multi-task dual branch lightweight CNN network that performs real-time on device Text Localization and High-level Script Clustering simultaneously. The network drastically reduces the number of calls to a separate script identification module, by grouping and identifying some majorly used scripts through a single feed-forward pass over the localization network. We also introduce a novel structural similarity based channel pruning mechanism to build an efficient network with only 1.15M parameters. Experiments on benchmark datasets suggest that our method achieves state-of-the-art performance, with execution latency of 60 ms for the entire pipeline on the Exynos 990 chipset device.

* Accepted for publication in IJCNN 2021 

  Access Paper or Ask Questions

Multilingual Text Analysis for Text-to-Speech Synthesis

Aug 19, 1996
Richard Sproat

We present a model of text analysis for text-to-speech (TTS) synthesis based on (weighted) finite-state transducers, which serves as the text-analysis module of the multilingual Bell Labs TTS system. The transducers are constructed using a lexical toolkit that allows declarative descriptions of lexicons, morphological rules, numeral-expansion rules, and phonological rules, inter alia. To date, the model has been applied to eight languages: Spanish, Italian, Romanian, French, German, Russian, Mandarin and Japanese.

* ECAI Workshop on Extended Finite-State Models of Language 

  Access Paper or Ask Questions

Kernel Proposal Network for Arbitrary Shape Text Detection

Mar 12, 2022
Shi-Xue Zhang, Xiaobin Zhu, Jie-Bo Hou, Chun Yang, Xu-Cheng Yin

Segmentation-based methods have achieved great success for arbitrary shape text detection. However, separating neighboring text instances is still one of the most challenging problems due to the complexity of texts in scene images. In this paper, we propose an innovative Kernel Proposal Network (dubbed KPN) for arbitrary shape text detection. The proposed KPN can separate neighboring text instances by classifying different texts into instance-independent feature maps, meanwhile avoiding the complex aggregation process existing in segmentation-based arbitrary shape text detection methods. To be concrete, our KPN will predict a Gaussian center map for each text image, which will be used to extract a series of candidate kernel proposals (i.e., dynamic convolution kernel) from the embedding feature maps according to their corresponding keypoint positions. To enforce the independence between kernel proposals, we propose a novel orthogonal learning loss (OLL) via orthogonal constraints. Specifically, our kernel proposals contain important self-information learned by network and location information by position embedding. Finally, kernel proposals will individually convolve all embedding feature maps for generating individual embedded maps of text instances. In this way, our KPN can effectively separate neighboring text instances and improve the robustness against unclear boundaries. To our knowledge, our work is the first to introduce the dynamic convolution kernel strategy to efficiently and effectively tackle the adhesion problem of neighboring text instances in text detection. Experimental results on challenging datasets verify the impressive performance and efficiency of our method. The code and model are available at

* This paper was completed in 2020-11.It was first submitted to CVPR 2021 and then ICCV 2021. Finally, it has been accepted by TNNLS in 2022-02 after major revision. Here, I thank Dr.Hou for his important contributions 

  Access Paper or Ask Questions

Robust Text Detection in Natural Scene Images

Jun 02, 2013
Xu-Cheng Yin, Xuwang Yin, Kaizhu Huang, Hong-Wei Hao

Text detection in natural scene images is an important prerequisite for many content-based image analysis tasks. In this paper, we propose an accurate and robust method for detecting texts in natural scene images. A fast and effective pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSERs) as character candidates using the strategy of minimizing regularized variations. Character candidates are grouped into text candidates by the ingle-link clustering algorithm, where distance weights and threshold of the clustering algorithm are learned automatically by a novel self-training distance metric learning algorithm. The posterior probabilities of text candidates corresponding to non-text are estimated with an character classifier; text candidates with high probabilities are then eliminated and finally texts are identified with a text classifier. The proposed system is evaluated on the ICDAR 2011 Robust Reading Competition dataset; the f measure is over 76% and is significantly better than the state-of-the-art performance of 71%. Experimental results on a publicly available multilingual dataset also show that our proposed method can outperform the other competitive method with the f measure increase of over 9 percent. Finally, we have setup an online demo of our proposed scene text detection system at

* IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 36, no. 5, pp. 970-983, 2014 
* A Draft Version (Submitted to IEEE TPAMI) 

  Access Paper or Ask Questions

Why You Should Try the Real Data for the Scene Text Recognition

Jul 29, 2021
Vladimir Loginov

Recent works in the text recognition area have pushed forward the recognition results to the new horizons. But for a long time a lack of large human-labeled natural text recognition datasets has been forcing researchers to use synthetic data for training text recognition models. Even though synthetic datasets are very large (MJSynth and SynthTest, two most famous synthetic datasets, have several million images each), their diversity could be insufficient, compared to natural datasets like ICDAR and others. Fortunately, the recently released text-recognition annotation for OpenImages V5 dataset has comparable with synthetic dataset number of instances and more diverse examples. We have used this annotation with a Text Recognition head architecture from the Yet Another Mask Text Spotter and got comparable to the SOTA results. On some datasets we have even outperformed previous SOTA models. In this paper we also introduce a text recognition model. The model's code is available.

  Access Paper or Ask Questions

All you need is a second look: Towards Tighter Arbitrary shape text detection

Apr 26, 2020
Meng Cao, Yuexian Zou

Deep learning-based scene text detection methods have progressed substantially over the past years. However, there remain several problems to be solved. Generally, long curve text instances tend to be fragmented because of the limited receptive field size of CNN. Besides, simple representations using rectangle or quadrangle bounding boxes fall short when dealing with more challenging arbitrary-shaped texts. In addition, the scale of text instances varies greatly which leads to the difficulty of accurate prediction through a single segmentation network. To address these problems, we innovatively propose a two-stage segmentation based arbitrary text detector named \textit{NASK} (\textbf{N}eed \textbf{A} \textbf{S}econd loo\textbf{K}). Specifically, \textit{NASK} consists of a Text Instance Segmentation network namely \textit{TIS} (\(1^{st}\) stage), a Text RoI Pooling module and a Fiducial pOint eXpression module termed as \textit{FOX} (\(2^{nd}\) stage). Firstly, \textit{TIS} conducts instance segmentation to obtain rectangle text proposals with a proposed Group Spatial and Channel Attention module (\textit{GSCA}) to augment the feature expression. Then, Text RoI Pooling transforms these rectangles to the fixed size. Finally, \textit{FOX} is introduced to reconstruct text instances with a more tighter representation using the predicted geometrical attributes including text center line, text line orientation, character scale and character orientation. Experimental results on two public benchmarks including \textit{Total-Text} and \textit{SCUT-CTW1500} have demonstrated that the proposed \textit{NASK} achieves state-of-the-art results.

* 5 pages, 6 figures 

  Access Paper or Ask Questions

t-SS3: a text classifier with dynamic n-grams for early risk detection over text streams

Nov 11, 2019
Sergio G. Burdisso, Marcelo Errecalde, Manuel Montes-y-Gómez

A recently introduced classifier, called SS3, has shown to be well suited to deal with early risk detection (ERD) problems on text streams. It obtained state-of-the-art performance on early depression and anorexia detection on Reddit in the CLEF's eRisk open tasks. SS3 was created to naturally deal with ERD problems since: it supports incremental training and classification over text streams and it can visually explain its rationale. However, SS3 processes the input using a bag-of-word model lacking the ability to recognize important word sequences. This could negatively affect the classification performance and also reduces the descriptiveness of visual explanations. In the standard document classification field, it is very common to use word n-grams to try to overcome some of these limitations. Unfortunately, when working with text streams, using n-grams is not trivial since the system must learn and recognize which n-grams are important ``on the fly''. This paper introduces t-SS3, a variation of SS3 which expands the model to dynamically recognize useful patterns over text streams. We evaluated our model on the eRisk 2017 and 2018 tasks on early depression and anorexia detection. Experimental results show that t-SS3 is able to improve both, existing results and the richness of visual explanations.

* Highlights: (*) A classifier that is able to dynamically learn and recognize important word n-grams. (*) A novel text classifier having the ability to visually explain its rationale. (*) Support for incremental learning and text classification over streams. (*) Efficient model for addressing early risk detection problems 

  Access Paper or Ask Questions

Sliding Line Point Regression for Shape Robust Scene Text Detection

Jan 30, 2018
Yixing Zhu, Jun Du

Traditional text detection methods mostly focus on quadrangle text. In this study we propose a novel method named sliding line point regression (SLPR) in order to detect arbitrary-shape text in natural scene. SLPR regresses multiple points on the edge of text line and then utilizes these points to sketch the outlines of the text. The proposed SLPR can be adapted to many object detection architectures such as Faster R-CNN and R-FCN. Specifically, we first generate the smallest rectangular box including the text with region proposal network (RPN), then isometrically regress the points on the edge of text by using the vertically and horizontally sliding lines. To make full use of information and reduce redundancy, we calculate x-coordinate or y-coordinate of target point by the rectangular box position, and just regress the remaining y-coordinate or x-coordinate. Accordingly we can not only reduce the parameters of system, but also restrain the points which will generate more regular polygon. Our approach achieved competitive results on traditional ICDAR2015 Incidental Scene Text benchmark and curve text detection dataset CTW1500.

  Access Paper or Ask Questions