Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

Integrating Text Inputs For Training and Adapting RNN Transducer ASR Models

Feb 26, 2022
Samuel Thomas, Brian Kingsbury, George Saon, Hong-Kwang J. Kuo

Compared to hybrid automatic speech recognition (ASR) systems that use a modular architecture in which each component can be independently adapted to a new domain, recent end-to-end (E2E) ASR system are harder to customize due to their all-neural monolithic construction. In this paper, we propose a novel text representation and training framework for E2E ASR models. With this approach, we show that a trained RNN Transducer (RNN-T) model's internal LM component can be effectively adapted with text-only data. An RNN-T model trained using both speech and text inputs improves over a baseline model trained on just speech with close to 13% word error rate (WER) reduction on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation. The usefulness of the proposed approach is further demonstrated by customizing this general purpose RNN-T model to three separate datasets. We observe 20-45% relative word error rate (WER) reduction in these settings with this novel LM style customization technique using only unpaired text data from the new domains.

* \c{opyright}2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works 

  Access Paper or Ask Questions

Multi-class Text Classification using BERT-based Active Learning

Apr 27, 2021
Sumanth Prabhu, Moosa Mohamed, Hemant Misra

Text Classification finds interesting applications in the pickup and delivery services industry where customers require one or more items to be picked up from a location and delivered to a certain destination. Classifying these customer transactions into multiple categories helps understand the market needs for different customer segments. Each transaction is accompanied by a text description provided by the customer to describe the products being picked up and delivered which can be used to classify the transaction. BERT-based models have proven to perform well in Natural Language Understanding. However, the product descriptions provided by the customers tend to be short, incoherent and code-mixed (Hindi-English) text which demands fine-tuning of such models with manually labelled data to achieve high accuracy. Collecting this labelled data can prove to be expensive. In this paper, we explore Active Learning strategies to label transaction descriptions cost effectively while using BERT to train a transaction classification model. On TREC-6, AG's News Corpus and an internal dataset, we benchmark the performance of BERT across different Active Learning strategies in Multi-Class Text Classification.

  Access Paper or Ask Questions

Uncovering Latent Biases in Text: Method and Application to Peer Review

Oct 29, 2020
Emaad Manzoor, Nihar B. Shah

Quantifying systematic disparities in numerical quantities such as employment rates and wages between population subgroups provides compelling evidence for the existence of societal biases. However, biases in the text written for members of different subgroups (such as in recommendation letters for male and non-male candidates), though widely reported anecdotally, remain challenging to quantify. In this work, we introduce a novel framework to quantify bias in text caused by the visibility of subgroup membership indicators. We develop a nonparametric estimation and inference procedure to estimate this bias. We then formalize an identification strategy to causally link the estimated bias to the visibility of subgroup membership indicators, provided observations from time periods both before and after an identity-hiding policy change. We identify an application wherein "ground truth" bias can be inferred to evaluate our framework, instead of relying on synthetic or secondary data. Specifically, we apply our framework to quantify biases in the text of peer reviews from a reputed machine learning conference before and after the conference adopted a double-blind reviewing policy. We show evidence of biases in the review ratings that serves as "ground truth", and show that our proposed framework accurately detects these biases from the review text without having access to the review ratings.

  Access Paper or Ask Questions

Omnidirectional Scene Text Detection with Sequential-free Box Discretization

Jun 07, 2019
Yuliang Liu, Sheng Zhang, Lianwen Jin, Lele Xie, Yaqiang Wu, Zhepeng Wang

Scene text in the wild is commonly presented with high variant characteristics. Using quadrilateral bounding box to localize the text instance is nearly indispensable for detection methods. However, recent researches reveal that introducing quadrilateral bounding box for scene text detection will bring a label confusion issue which is easily overlooked, and this issue may significantly undermine the detection performance. To address this issue, in this paper, we propose a novel method called Sequential-free Box Discretization (SBD) by discretizing the bounding box into key edges (KE) which can further derive more effective methods to improve detection performance. Experiments showed that the proposed method can outperform state-of-the-art methods in many popular scene text benchmarks, including ICDAR 2015, MLT, and MSRA-TD500. Ablation study also showed that simply integrating the SBD into Mask R-CNN framework, the detection performance can be substantially improved. Furthermore, an experiment on the general object dataset HRSC2016 (multi-oriented ships) showed that our method can outperform recent state-of-the-art methods by a large margin, demonstrating its powerful generalization ability.

* Accepted by IJCAI2019 

  Access Paper or Ask Questions

Weak Supervision for Generating Pixel-Level Annotations in Scene Text Segmentation

Nov 19, 2019
Simone Bonechi, Paolo Andreini, Monica Bianchini, Franco Scarselli

Providing pixel-level supervisions for scene text segmentation is inherently difficult and costly, so that only few small datasets are available for this task. To face the scarcity of training data, previous approaches based on Convolutional Neural Networks (CNNs) rely on the use of a synthetic dataset for pre-training. However, synthetic data cannot reproduce the complexity and variability of natural images. In this work, we propose to use a weakly supervised learning approach to reduce the domain-shift between synthetic and real data. Leveraging the bounding-box supervision of the COCO-Text and the MLT datasets, we generate weak pixel-level supervisions of real images. In particular, the COCO-Text-Segmentation (COCO_TS) and the MLT-Segmentation (MLT_S) datasets are created and released. These two datasets are used to train a CNN, the Segmentation Multiscale Attention Network (SMANet), which is specifically designed to face some peculiarities of the scene text segmentation task. The SMANet is trained end-to-end on the proposed datasets, and the experiments show that COCO_TS and MLT_S are a valid alternative to synthetic images, allowing to use only a fraction of the training samples and improving significantly the performances.

* arXiv admin note: substantial text overlap with arXiv:1904.00818 

  Access Paper or Ask Questions

Adversarial Examples for Extreme Multilabel Text Classification

Dec 14, 2021
Mohammadreza Qaraei, Rohit Babbar

Extreme Multilabel Text Classification (XMTC) is a text classification problem in which, (i) the output space is extremely large, (ii) each data point may have multiple positive labels, and (iii) the data follows a strongly imbalanced distribution. With applications in recommendation systems and automatic tagging of web-scale documents, the research on XMTC has been focused on improving prediction accuracy and dealing with imbalanced data. However, the robustness of deep learning based XMTC models against adversarial examples has been largely underexplored. In this paper, we investigate the behaviour of XMTC models under adversarial attacks. To this end, first, we define adversarial attacks in multilabel text classification problems. We categorize attacking multilabel text classifiers as (a) positive-targeted, where the target positive label should fall out of top-k predicted labels, and (b) negative-targeted, where the target negative label should be among the top-k predicted labels. Then, by experiments on APLC-XLNet and AttentionXML, we show that XMTC models are highly vulnerable to positive-targeted attacks but more robust to negative-targeted ones. Furthermore, our experiments show that the success rate of positive-targeted adversarial attacks has an imbalanced distribution. More precisely, tail classes are highly vulnerable to adversarial attacks for which an attacker can generate adversarial samples with high similarity to the actual data-points. To overcome this problem, we explore the effect of rebalanced loss functions in XMTC where not only do they increase accuracy on tail classes, but they also improve the robustness of these classes against adversarial attacks. The code for our experiments is available at

  Access Paper or Ask Questions

Seeing The Whole Patient: Using Multi-Label Medical Text Classification Techniques to Enhance Predictions of Medical Codes

Mar 29, 2020
Vithya Yogarajan, Jacob Montiel, Tony Smith, Bernhard Pfahringer

Machine learning-based multi-label medical text classifications can be used to enhance the understanding of the human body and aid the need for patient care. We present a broad study on clinical natural language processing techniques to maximise a feature representing text when predicting medical codes on patients with multi-morbidity. We present results of multi-label medical text classification problems with 18, 50 and 155 labels. We compare several variations to embeddings, text tagging, and pre-processing. For imbalanced data we show that labels which occur infrequently, benefit the most from additional features incorporated in embeddings. We also show that high dimensional embeddings pre-trained using health-related data present a significant improvement in a multi-label setting, similarly to the way they improve performance for binary classification. High dimensional embeddings from this research are made available for public use.

  Access Paper or Ask Questions

Automated Phrase Mining from Massive Text Corpora

Mar 11, 2017
Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R Voss, Jiawei Han

As one of the fundamental tasks in text analysis, phrase mining aims at extracting quality phrases from a text corpus. Phrase mining is important in various tasks such as information extraction/retrieval, taxonomy construction, and topic modeling. Most existing methods rely on complex, trained linguistic analyzers, and thus likely have unsatisfactory performance on text corpora of new domains and genres without extra but expensive adaption. Recently, a few data-driven methods have been developed successfully for extraction of phrases from massive domain-specific text. However, none of the state-of-the-art models is fully automated because they require human experts for designing rules or labeling phrases. Since one can easily obtain many quality phrases from public knowledge bases to a scale that is much larger than that produced by human experts, in this paper, we propose a novel framework for automated phrase mining, AutoPhrase, which leverages this large amount of high-quality phrases in an effective way and achieves better performance compared to limited human labeled phrases. In addition, we develop a POS-guided phrasal segmentation model, which incorporates the shallow syntactic information in part-of-speech (POS) tags to further enhance the performance, when a POS tagger is available. Note that, AutoPhrase can support any language as long as a general knowledge base (e.g., Wikipedia) in that language is available, while benefiting from, but not requiring, a POS tagger. Compared to the state-of-the-art methods, the new method has shown significant improvements in effectiveness on five real-world datasets across different domains and languages.

  Access Paper or Ask Questions

ReADS: A Rectified Attentional Double Supervised Network for Scene Text Recognition

Apr 07, 2020
Qi Song, Qianyi Jiang, Nan Li, Rui Zhang, Xiaolin Wei

In recent years, scene text recognition is always regarded as a sequence-to-sequence problem. Connectionist Temporal Classification (CTC) and Attentional sequence recognition (Attn) are two very prevailing approaches to tackle this problem while they may fail in some scenarios respectively. CTC concentrates more on every individual character but is weak in text semantic dependency modeling. Attn based methods have better context semantic modeling ability while tends to overfit on limited training data. In this paper, we elaborately design a Rectified Attentional Double Supervised Network (ReADS) for general scene text recognition. To overcome the weakness of CTC and Attn, both of them are applied in our method but with different modules in two supervised branches which can make a complementary to each other. Moreover, effective spatial and channel attention mechanisms are introduced to eliminate background noise and extract valid foreground information. Finally, a simple rectified network is implemented to rectify irregular text. The ReADS can be trained end-to-end and only word-level annotations are required. Extensive experiments on various benchmarks verify the effectiveness of ReADS which achieves state-of-the-art performance.

* 8 pages, 3 figures 

  Access Paper or Ask Questions