Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

JPLink: On Linking Jobs to Vocational Interest Types

Feb 06, 2020
Amila Silva, Pei-Chi Lo, Ee-Peng Lim

Linking job seekers with relevant jobs requires matching based on not only skills, but also personality types. Although the Holland Code also known as RIASEC has frequently been used to group people by their suitability for six different categories of occupations, the RIASEC category labels of individual jobs are often not found in job posts. This is attributed to significant manual efforts required for assigning job posts with RIASEC labels. To cope with assigning massive number of jobs with RIASEC labels, we propose JPLink, a machine learning approach using the text content in job titles and job descriptions. JPLink exploits domain knowledge available in an occupation-specific knowledge base known as O*NET to improve feature representation of job posts. To incorporate relative ranking of RIASEC labels of each job, JPLink proposes a listwise loss function inspired by learning to rank. Both our quantitative and qualitative evaluations show that JPLink outperforms conventional baselines. We conduct an error analysis on JPLink's predictions to show that it can uncover label errors in existing job posts.

  Access Paper or Ask Questions

Indiscapes: Instance Segmentation Networks for Layout Parsing of Historical Indic Manuscripts

Dec 15, 2019
Abhishek Prusty, Sowmya Aitha, Abhishek Trivedi, Ravi Kiran Sarvadevabhatla

Historical palm-leaf manuscript and early paper documents from Indian subcontinent form an important part of the world's literary and cultural heritage. Despite their importance, large-scale annotated Indic manuscript image datasets do not exist. To address this deficiency, we introduce Indiscapes, the first ever dataset with multi-regional layout annotations for historical Indic manuscripts. To address the challenge of large diversity in scripts and presence of dense, irregular layout elements (e.g. text lines, pictures, multiple documents per image), we adapt a Fully Convolutional Deep Neural Network architecture for fully automatic, instance-level spatial layout parsing of manuscript images. We demonstrate the effectiveness of proposed architecture on images from the Indiscapes dataset. For annotation flexibility and keeping the non-technical nature of domain experts in mind, we also contribute a custom, web-based GUI annotation tool and a dashboard-style analytics portal. Overall, our contributions set the stage for enabling downstream applications such as OCR and word-spotting in historical Indic manuscripts at scale.

* Oral presentation at International Conference on Document Analysis and Recognition (ICDAR) - 2019. For dataset, pre-trained networks and additional details, visit project page at 

  Access Paper or Ask Questions

Capturing the Production of the Innovative Ideas: An Online Social Network Experiment and "Idea Geography" Visualization

Nov 14, 2019
Yiding Cao, Yingjun Dong, Minjun Kim, Neil G. MacLaren, Ankita Kulkarni, Shelley D. Dionne, Francis J. Yammarino, Hiroki Sayama

Collective design and innovation are crucial in organizations. To investigate how the collective design and innovation processes would be affected by the diversity of knowledge and background of collective individual members, we conducted three collaborative design task experiments which involved nearly 300 participants who worked together anonymously in a social network structure using a custom-made computer-mediated collaboration platform. We compared the idea generation activity among three different background distribution conditions (clustered, random, and dispersed) with the help of the "doc2vec" text representation machine learning algorithm. We also developed a new method called "Idea Geography" to visualize the idea utility terrain on a 2D problem domain. The results showed that groups with random background allocation tended to produce the best design idea with highest utility values. It was also suggested that the diversity of participants' backgrounds distribution on the network might interact with each other to affect the diversity of ideas generated. The proposed idea geography successfully visualized that the collective design processes did find the high utility area through exploration and exploitation in collaborative work.

* 16 pages, 10 figures, submitted to CSS 2019 (Computational Social Science 2019) 

  Access Paper or Ask Questions

TAB-VCR: Tags and Attributes based VCR Baselines

Oct 31, 2019
Jingxiang Lin, Unnat Jain, Alexander G. Schwing

Reasoning is an important ability that we learn from a very early age. Yet, reasoning is extremely hard for algorithms. Despite impressive recent progress that has been reported on tasks that necessitate reasoning, such as visual question answering and visual dialog, models often exploit biases in datasets. To develop models with better reasoning abilities, recently, the new visual commonsense reasoning(VCR) task has been introduced. Not only do models have to answer questions, but also do they have to provide a reason for the given answer. The proposed baseline achieved compelling results, leveraging a meticulously designed model composed of LSTM modules and attention nets. Here we show that a much simpler model obtained by ablating and pruning the existing intricate baseline can perform better with half the number of trainable parameters. By associating visual features with attribute information and better text to image grounding, we obtain further improvements for our simpler & effective baseline, TAB-VCR. We show that this approach results in a 5.3%, 4.4% and 6.5% absolute improvement over the previous state-of-the-art on question answering, answer justification and holistic VCR.

* Accepted to NeurIPS 2019. Project page: 

  Access Paper or Ask Questions

Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning

Sep 06, 2019
Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi

Understanding narratives requires reading between the lines, which in turn, requires interpreting the likely causes and effects of events, even when they are not mentioned explicitly. In this paper, we introduce Cosmos QA, a large-scale dataset of 35,600 problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. In stark contrast to most existing reading comprehension datasets where the questions focus on factual and literal understanding of the context paragraph, our dataset focuses on reading between the lines over a diverse collection of people's everyday narratives, asking such questions as "what might be the possible reason of ...?", or "what would have happened if ..." that require reasoning beyond the exact text spans in the context. To establish baseline performances on Cosmos QA, we experiment with several state-of-the-art neural architectures for reading comprehension, and also propose a new architecture that improves over the competitive baselines. Experimental results demonstrate a significant gap between machine (68.4%) and human performance (94%), pointing to avenues for future research on commonsense machine comprehension. Dataset, code and leaderboard is publicly available at

* EMNLP'2019 

  Access Paper or Ask Questions

Rethinking Attribute Representation and Injection for Sentiment Classification

Aug 26, 2019
Reinald Kim Amplayo

Text attributes, such as user and product information in product reviews, have been used to improve the performance of sentiment classification models. The de facto standard method is to incorporate them as additional biases in the attention mechanism, and more performance gains are achieved by extending the model architecture. In this paper, we show that the above method is the least effective way to represent and inject attributes. To demonstrate this hypothesis, unlike previous models with complicated architectures, we limit our base model to a simple BiLSTM with attention classifier, and instead focus on how and where the attributes should be incorporated in the model. We propose to represent attributes as chunk-wise importance weight matrices and consider four locations in the model (i.e., embedding, encoding, attention, classifier) to inject attributes. Experiments show that our proposed method achieves significant improvements over the standard approach and that attention mechanism is the worst location to inject attributes, contradicting prior work. We also outperform the state-of-the-art despite our use of a simple base model. Finally, we show that these representations transfer well to other tasks. Model implementation and datasets are released here:

* EMNLP 2019 

  Access Paper or Ask Questions

A Generate-Validate Approach to Answering Questions about Qualitative Relationships

Aug 09, 2019
Arindam Mitra, Chitta Baral, Aurgho Bhattacharjee, Ishan Shrivastava

Qualitative relationships describe how increasing or decreasing one property (e.g. altitude) affects another (e.g. temperature). They are an important aspect of natural language question answering and are crucial for building chatbots or voice agents where one may enquire about qualitative relationships. Recently a dataset about question answering involving qualitative relationships has been proposed, and a few approaches to answer such questions have been explored, in the heart of which lies a semantic parser that converts the natural language input to a suitable logical form. A problem with existing semantic parsers is that they try to directly convert the input sentences to a logical form. Since the output language varies with each application, it forces the semantic parser to learn almost everything from scratch. In this paper, we show that instead of using a semantic parser to produce the logical form, if we apply the generate-validate framework i.e. generate a natural language description of the logical form and validate if the natural language description is followed from the input text, we get a better scope for transfer learning and our method outperforms the state-of-the-art by a large margin of 7.93%.

  Access Paper or Ask Questions

Catching the Phish: Detecting Phishing Attacks using Recurrent Neural Networks (RNNs)

Aug 09, 2019
Lukas Halgas, Ioannis Agrafiotis, Jason R. C. Nurse

The emergence of online services in our daily lives has been accompanied by a range of malicious attempts to trick individuals into performing undesired actions, often to the benefit of the adversary. The most popular medium of these attempts is phishing attacks, particularly through emails and websites. In order to defend against such attacks, there is an urgent need for automated mechanisms to identify this malevolent content before it reaches users. Machine learning techniques have gradually become the standard for such classification problems. However, identifying common measurable features of phishing content (e.g., in emails) is notoriously difficult. To address this problem, we engage in a novel study into a phishing content classifier based on a recurrent neural network (RNN), which identifies such features without human input. At this stage, we scope our research to emails, but our approach can be extended to apply to websites. Our results show that the proposed system outperforms state-of-the-art tools. Furthermore, our classifier is efficient and takes into account only the text and, in particular, the textual structure of the email. Since these features are rarely considered in email classification, we argue that our classifier can complement existing classifiers with high information gain.

* 20th World Conference on Information Security Applications (WISA 2019) 
* 13 pages 

  Access Paper or Ask Questions

OmniNet: A unified architecture for multi-modal multi-task learning

Jul 17, 2019
Subhojeet Pramanik, Priyanka Agrawal, Aman Hussain

Transformer is a popularly used neural network architecture, especially for language understanding. We introduce an extended and unified architecture which can be used for tasks involving a variety of modalities like image, text, videos, etc. We propose a spatio-temporal cache mechanism that enables learning spatial dimension of the input in addition to the hidden states corresponding to the temporal input sequence. The proposed architecture further enables a single model to support tasks with multiple input modalities as well as asynchronous multi-task learning, thus we refer to it as OmniNet. For example, a single instance of OmniNet can concurrently learn to perform the tasks of part-of-speech tagging, image captioning, visual question answering and video activity recognition. We demonstrate that training these four tasks together results in about three times compressed model while retaining the performance in comparison to training them individually. We also show that using this neural network pre-trained on some modalities assists in learning an unseen task. This illustrates the generalization capacity of the self-attention mechanism on the spatio-temporal cache present in OmniNet.

* Source code available at: 

  Access Paper or Ask Questions