Transcending the binary categorization of racist and xenophobic texts, this research takes cues from social science theories to develop a four dimensional category for racism and xenophobia detection, namely stigmatization, offensiveness, blame, and exclusion. With the aid of deep learning techniques, this categorical detection enables insights into the nuances of emergent topics reflected in racist and xenophobic expression on Twitter. Moreover, a stage wise analysis is applied to capture the dynamic changes of the topics across the stages of early development of Covid-19 from a domestic epidemic to an international public health emergency, and later to a global pandemic. The main contributions of this research include, first the methodological advancement. By bridging the state-of-the-art computational methods with social science perspective, this research provides a meaningful approach for future research to gain insight into the underlying subtlety of racist and xenophobic discussion on digital platforms. Second, by enabling a more accurate comprehension and even prediction of public opinions and actions, this research paves the way for the enactment of effective intervention policies to combat racist crimes and social exclusion under Covid-19.
In many applications such as recidivism prediction, facility inspection, and benefit assignment, it's important for individuals to know the decision-relevant information for the model's prediction. In addition, the model's predictions should be fairly justified. Essentially, decision-relevant features should provide sufficient information for the predicted outcome and should be independent of the membership of individuals in protected groups such as race and gender. In this work, we focus on the problem of (un)fairness in the justification of the text-based neural models. We tie the explanatory power of the model to fairness in the outcome and propose a fairness-aware summarization mechanism to detect and counteract the bias in such models. Given a potentially biased natural language explanation for a decision, we use a multi-task neural model and an attribution mechanism based on integrated gradients to extract the high-utility and discrimination-free justifications in the form of a summary. The extracted summary is then used for training a model to make decisions for individuals. Results on several real-world datasets suggests that our method: (i) assists users to understand what information is used for the model's decision and (ii) enhances the fairness in outcomes while significantly reducing the demographic leakage.
Although modern machine learning and deep learning methods allow for complex and in-depth data analytics, the predictive models generated by these methods are often highly complex, and lack transparency. Explainable AI (XAI) methods are used to improve the interpretability of these complex models, and in doing so improve transparency. However, the inherent fitness of these explainable methods can be hard to evaluate. In particular, methods to evaluate the fidelity of the explanation to the underlying black box require further development, especially for tabular data. In this paper, we (a) propose a three phase approach to developing an evaluation method; (b) adapt an existing evaluation method primarily for image and text data to evaluate models trained on tabular data; and (c) evaluate two popular explainable methods using this evaluation method. Our evaluations suggest that the internal mechanism of the underlying predictive model, the internal mechanism of the explainable method used and model and data complexity all affect explanation fidelity. Given that explanation fidelity is so sensitive to context and tools and data used, we could not clearly identify any specific explainable method as being superior to another.
Automated event extraction in social science applications often requires corpus-level evaluations: for example, aggregating text predictions across metadata and unbiased estimates of recall. We combine corpus-level evaluation requirements with a real-world, social science setting and introduce the IndiaPoliceEvents corpus--all 21,391 sentences from 1,257 English-language Times of India articles about events in the state of Gujarat during March 2002. Our trained annotators read and label every document for mentions of police activity events, allowing for unbiased recall evaluations. In contrast to other datasets with structured event representations, we gather annotations by posing natural questions, and evaluate off-the-shelf models for three different tasks: sentence classification, document ranking, and temporal aggregation of target events. We present baseline results from zero-shot BERT-based models fine-tuned on natural language inference and passage retrieval tasks. Our novel corpus-level evaluations and annotation approach can guide creation of similar social-science-oriented resources in the future.
Existing pre-trained language models (PLMs) are often computationally expensive in inference, making them impractical in various resource-limited real-world applications. To address this issue, we propose a dynamic token reduction approach to accelerate PLMs' inference, named TR-BERT, which could flexibly adapt the layer number of each token in inference to avoid redundant calculation. Specially, TR-BERT formulates the token reduction process as a multi-step token selection problem and automatically learns the selection strategy via reinforcement learning. The experimental results on several downstream NLP tasks show that TR-BERT is able to speed up BERT by 2-5 times to satisfy various performance demands. Moreover, TR-BERT can also achieve better performance with less computation in a suite of long-text tasks since its token-level layer number adaption greatly accelerates the self-attention operation in PLMs. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/TR-BERT.
Recent work on explainable clustering allows describing clusters when the features are interpretable. However, much modern machine learning focuses on complex data such as images, text, and graphs where deep learning is used but the raw features of data are not interpretable. This paper explores a novel setting for performing clustering on complex data while simultaneously generating explanations using interpretable tags. We propose deep descriptive clustering that performs sub-symbolic representation learning on complex data while generating explanations based on symbolic data. We form good clusters by maximizing the mutual information between empirical distribution on the inputs and the induced clustering labels for clustering objectives. We generate explanations by solving an integer linear programming that generates concise and orthogonal descriptions for each cluster. Finally, we allow the explanation to inform better clustering by proposing a novel pairwise loss with self-generated constraints to maximize the clustering and explanation module's consistency. Experimental results on public data demonstrate that our model outperforms competitive baselines in clustering performance while offering high-quality cluster-level explanations.
End-to-end models have gradually become the preferred option for automatic speech recognition (ASR) applications. During the training of end-to-end ASR, data augmentation is a quite effective technique for regularizing the neural networks. This paper proposes a novel data augmentation technique based on semantic transposition of the transcriptions via syntax rules for end-to-end Mandarin ASR. Specifically, we first segment the transcriptions based on part-of-speech tags. Then transposition strategies, such as placing the object in front of the subject or swapping the subject and the object, are applied on the segmented sentences. Finally, the acoustic features corresponding to the transposed transcription are reassembled based on the audio-to-text forced-alignment produced by a pre-trained ASR system. The combination of original data and augmented one is used for training a new ASR system. The experiments are conducted on the Transformer[2] and Conformer[3] based ASR. The results show that the proposed method can give consistent performance gain to the system. Augmentation related issues, such as comparison of different strategies and ratios for data combination are also investigated.
Video game level generation based on machine learning (ML), in particular, deep generative models, has attracted attention as a technique to automate level generation. However, applications of existing ML-based level generations are mostly limited to tile-based level representation. When ML techniques are applied to game domains with non-tile-based level representation, such as Angry Birds, where objects in a level are specified by real-valued parameters, ML often fails to generate playable levels. In this study, we develop a deep-generative-model-based level generation for the game domain of Angry Birds. To overcome these drawbacks, we propose a sequential encoding of a level and process it as text data, whereas existing approaches employ a tile-based encoding and process it as an image. Experiments show that the proposed level generator drastically improves the stability and diversity of generated levels compared with existing approaches. We apply latent variable evolution with the proposed generator to control the feature of a generated level computed through an AI agent's play, while keeping the level stable and natural.
Interpretability or explainability is an emerging research field in NLP. From a user-centric point of view, the goal is to build models that provide proper justification for their decisions, similar to those of humans, by requiring the models to satisfy additional constraints. To this end, we introduce a new application on legal text where, contrary to mainstream literature targeting word-level rationales, we conceive rationales as selected paragraphs in multi-paragraph structured court cases. We also release a new dataset comprising European Court of Human Rights cases, including annotations for paragraph-level rationales. We use this dataset to study the effect of already proposed rationale constraints, i.e., sparsity, continuity, and comprehensiveness, formulated as regularizers. Our findings indicate that some of these constraints are not beneficial in paragraph-level rationale extraction, while others need re-formulation to better handle the multi-label nature of the task we consider. We also introduce a new constraint, singularity, which further improves the quality of rationales, even compared with noisy rationale supervision. Experimental results indicate that the newly introduced task is very challenging and there is a large scope for further research.
Neural networks are prone to learning spurious correlations from biased datasets, and are thus vulnerable when making inferences in a new target domain. Prior work reveals spurious patterns via post-hoc model explanations which compute the importance of input features, and further eliminates the unintended model behaviors by regularizing importance scores with human knowledge. However, such regularization technique lacks flexibility and coverage, since only importance scores towards a pre-defined list of features are adjusted, while more complex human knowledge such as feature interaction and pattern generalization can hardly be incorporated. In this work, we propose to refine a learned model by collecting human-provided compositional explanations on the models' failure cases. By describing generalizable rules about spurious patterns in the explanation, more training examples can be matched and regularized, tackling the challenge of regularization coverage. We additionally introduce a regularization term for feature interaction to support more complex human rationale in refining the model. We demonstrate the effectiveness of the proposed approach on two text classification tasks by showing improved performance in target domain after refinement.