Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram

Oct 25, 2019
Ryuichi Yamamoto, Eunwoo Song, Jae-Min Kim

We propose Parallel WaveGAN, a distillation-free, fast, and small-footprint waveform generation method using a generative adversarial network. In the proposed method, a non-autoregressive WaveNet is trained by jointly optimizing multi-resolution spectrogram and adversarial loss functions, which can effectively capture the time-frequency distribution of the realistic speech waveform. As our method does not require density distillation used in the conventional teacher-student framework, the entire model can be easily trained even with a small number of parameters. In particular, the proposed Parallel WaveGAN has only 1.44 M parameters and can generate 24 kHz speech waveform 28.68 times faster than real-time on a single GPU environment. Perceptual listening test results verify that our proposed method achieves 4.16 mean opinion score within a Transformer-based text-to-speech framework, which is comparative to the best distillation-based Parallel WaveNet system.

* submitted to ICASSP 2020 

  Access Paper or Ask Questions

Simpler and Faster Learning of Adaptive Policies for Simultaneous Translation

Sep 12, 2019
Baigong Zheng, Renjie Zheng, Mingbo Ma, Liang Huang

Simultaneous translation is widely useful but remains challenging. Previous work falls into two main categories: (a) fixed-latency policies such as Ma et al. (2019) and (b) adaptive policies such as Gu et al. (2017). The former are simple and effective, but have to aggressively predict future content due to diverging source-target word order; the latter do not anticipate, but suffer from unstable and inefficient training. To combine the merits of both approaches, we propose a simple supervised-learning framework to learn an adaptive policy from oracle READ/WRITE sequences generated from parallel text. At each step, such an oracle sequence chooses to WRITE the next target word if the available source sentence context provides enough information to do so, otherwise READ the next source word. Experiments on German<->English show that our method, without retraining the underlying NMT model, can learn flexible policies with better BLEU scores and similar latencies compared to previous work.

* EMNLP 2019 

  Access Paper or Ask Questions

Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards

Aug 27, 2019
Heriberto Cuayáhuitl, Donghyeon Lee, Seonghan Ryu, Sungja Choi, Inchul Hwang, Jihie Kim

Training chatbots using the reinforcement learning paradigm is challenging due to high-dimensional states, infinite action spaces and the difficulty in specifying the reward function. We address such problems using clustered actions instead of infinite actions, and a simple but promising reward function based on human-likeness scores derived from human-human dialogue data. We train Deep Reinforcement Learning (DRL) agents using chitchat data in raw text---without any manual annotations. Experimental results using different splits of training data report the following. First, that our agents learn reasonable policies in the environments they get familiarised with, but their performance drops substantially when they are exposed to a test set of unseen dialogues. Second, that the choice of sentence embedding size between 100 and 300 dimensions is not significantly different on test data. Third, that our proposed human-likeness rewards are reasonable for training chatbots as long as they use lengthy dialogue histories of >=10 sentences.

* In International Joint Conference of Neural Networks (IJCNN), 2019 

  Access Paper or Ask Questions

A Fast and Accurate One-Stage Approach to Visual Grounding

Aug 18, 2019
Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing Huang, Dong Yu, Jiebo Luo

We propose a simple, fast, and accurate one-stage approach to visual grounding, inspired by the following insight. The performances of existing propose-and-rank two-stage methods are capped by the quality of the region candidates they propose in the first stage --- if none of the candidates could cover the ground truth region, there is no hope in the second stage to rank the right region to the top. To avoid this caveat, we propose a one-stage model that enables end-to-end joint optimization. The main idea is as straightforward as fusing a text query's embedding into the YOLOv3 object detector, augmented by spatial features so as to account for spatial mentions in the query. Despite being simple, this one-stage approach shows great potential in terms of both accuracy and speed for both phrase localization and referring expression comprehension, according to our experiments. Given these results along with careful investigations into some popular region proposals, we advocate for visual grounding a paradigm shift from the conventional two-stage methods to the one-stage framework.

* ICCV 2019 Oral 

  Access Paper or Ask Questions

Mitigating Uncertainty in Document Classification

Jul 17, 2019
Xuchao Zhang, Fanglan Chen, Chang-Tien Lu, Naren Ramakrishnan

The uncertainty measurement of classifiers' predictions is especially important in applications such as medical diagnoses that need to ensure limited human resources can focus on the most uncertain predictions returned by machine learning models. However, few existing uncertainty models attempt to improve overall prediction accuracy where human resources are involved in the text classification task. In this paper, we propose a novel neural-network-based model that applies a new dropout-entropy method for uncertainty measurement. We also design a metric learning method on feature representations, which can boost the performance of dropout-based uncertainty methods with smaller prediction variance in accurate prediction trials. Extensive experiments on real-world data sets demonstrate that our method can achieve a considerable improvement in overall prediction accuracy compared to existing approaches. In particular, our model improved the accuracy from 0.78 to 0.92 when 30\% of the most uncertain predictions were handed over to human experts in "20NewsGroup" data.

* Accepted by NAACL19 

  Access Paper or Ask Questions

"My Way of Telling a Story": Persona based Grounded Story Generation

Jun 14, 2019
Shrimai Prabhumoye, Khyathi Raghavi Chandu, Ruslan Salakhutdinov, Alan W Black

Visual storytelling is the task of generating stories based on a sequence of images. Inspired by the recent works in neural generation focusing on controlling the form of text, this paper explores the idea of generating these stories in different personas. However, one of the main challenges of performing this task is the lack of a dataset of visual stories in different personas. Having said that, there are independent datasets for both visual storytelling and annotated sentences for various persona. In this paper we describe an approach to overcome this by getting labelled persona data from a different task and leveraging those annotations to perform persona based story generation. We inspect various ways of incorporating personality in both the encoder and the decoder representations to steer the generation in the target direction. To this end, we propose five models which are incremental extensions to the baseline model to perform the task at hand. In our experiments we use five different personas to guide the generation process. We find that the models based on our hypotheses perform better at capturing words while generating stories in the target persona.

* Storytelling Workshop at ACL 2019 

  Access Paper or Ask Questions

Levenshtein Transformer

May 27, 2019
Jiatao Gu, Changhan Wang, Jake Zhao

Modern neural sequence generation models are built to either generate tokens step-by-step from scratch or (iteratively) modify a sequence of tokens bounded by a fixed length. In this work, we develop Levenshtein Transformer, a new partially autoregressive model devised for more flexible and amenable sequence generation. Unlike previous approaches, the atomic operations of our model are insertion and deletion. The combination of them facilitates not only generation but also sequence refinement allowing dynamic length changes. We also propose a set of new training techniques dedicated at them, effectively exploiting one as the other's learning signal thanks to their complementary nature. Experiments applying the proposed model achieve comparable performance but much-improved efficiency on both generation (e.g. machine translation, text summarization) and refinement tasks (e.g. automatic post-editing). We further confirm the flexibility of our model by showing a Levenshtein Transformer trained by machine translation can straightforwardly be used for automatic post-editing.

* 16 pages (6 pages appendix). Work in progress 

  Access Paper or Ask Questions

Deep Zero-Shot Learning for Scene Sketch

May 11, 2019
Yao Xie, Peng Xu, Zhanyu Ma

We introduce a novel problem of scene sketch zero-shot learning (SSZSL), which is a challenging task, since (i) different from photo, the gap between common semantic domain (e.g., word vector) and sketch is too huge to exploit common semantic knowledge as the bridge for knowledge transfer, and (ii) compared with single-object sketch, more expressive feature representation for scene sketch is required to accommodate its high-level of abstraction and complexity. To overcome these challenges, we propose a deep embedding model for scene sketch zero-shot learning. In particular, we propose the augmented semantic vector to conduct domain alignment by fusing multi-modal semantic knowledge (e.g., cartoon image, natural image, text description), and adopt attention-based network for scene sketch feature learning. Moreover, we propose a novel distance metric to improve the similarity measure during testing. Extensive experiments and ablation studies demonstrate the benefit of our sketch-specific design.

* 5 pages, 3 figures, IEEE International Conference on Image Processing (ICIP) 

  Access Paper or Ask Questions

SoDeep: a Sorting Deep net to learn ranking loss surrogates

Apr 08, 2019
Martin Engilberge, Louis Chevallier, Patrick Pérez, Matthieu Cord

Several tasks in machine learning are evaluated using non-differentiable metrics such as mean average precision or Spearman correlation. However, their non-differentiability prevents from using them as objective functions in a learning framework. Surrogate and relaxation methods exist but tend to be specific to a given metric. In the present work, we introduce a new method to learn approximations of such non-differentiable objective functions. Our approach is based on a deep architecture that approximates the sorting of arbitrary sets of scores. It is trained virtually for free using synthetic data. This sorting deep (SoDeep) net can then be combined in a plug-and-play manner with existing deep architectures. We demonstrate the interest of our approach in three different tasks that require ranking: Cross-modal text-image retrieval, multi-label image classification and visual memorability ranking. Our approach yields very competitive results on these three tasks, which validates the merit and the flexibility of SoDeep as a proxy for sorting operation in ranking-based losses.

* Accepted to CVPR 2019 

  Access Paper or Ask Questions