This thesis presents a broad-coverage probabilistic top-down parser, and its application to the problem of language modeling for speech recognition. The parser builds fully connected derivations incrementally, in a single pass from left-to-right across the string. We argue that the parsing approach that we have adopted is well-motivated from a psycholinguistic perspective, as a model that captures probabilistic dependencies between lexical items, as part of the process of building connected syntactic structures. The basic parser and conditional probability models are presented, and empirical results are provided for its parsing accuracy on both newspaper text and spontaneous telephone conversations. Modifications to the probability model are presented that lead to improved performance. A new language model which uses the output of the parser is then defined. Perplexity and word error rate reduction are demonstrated over trigram models, even when the trigram is trained on significantly more data. Interpolation on a word-by-word basis with a trigram model yields additional improvements.
Writing specifications for computer programs is not easy since one has to take into account the disparate conceptual worlds of the application domain and of software development. To bridge this conceptual gap we propose controlled natural language as a declarative and application-specific specification language. Controlled natural language is a subset of natural language that can be accurately and efficiently processed by a computer, but is expressive enough to allow natural usage by non-specialists. Specifications in controlled natural language are automatically translated into Prolog clauses, hence become formal and executable. The translation uses a definite clause grammar (DCG) enhanced by feature structures. Inter-text references of the specification, e.g. anaphora, are resolved with the help of discourse representation theory (DRT). The generated Prolog clauses are added to a knowledge base. We have implemented a prototypical specification system that successfully processes the specification of a simple automated teller machine.
Summarization datasets are often assembled either by scraping naturally occurring public-domain summaries -- which are nearly always in difficult-to-work-with technical domains -- or by using approximate heuristics to extract them from everyday text -- which frequently yields unfaithful summaries. In this work, we turn to a slower but more straightforward approach to developing summarization benchmark data: We hire highly-qualified contractors to read stories and write original summaries from scratch. To amortize reading time, we collect five summaries per document, with the first giving an overview and the subsequent four addressing specific questions. We use this protocol to collect SQuALITY, a dataset of question-focused summaries built on the same public-domain short stories as the multiple-choice dataset QuALITY (Pang et al., 2021). Experiments with state-of-the-art summarization systems show that our dataset is challenging and that existing automatic evaluation metrics are weak indicators of quality.
Deep neural models, in particular Transformer-based pre-trained language models, require a significant amount of data to train. This need for data tends to lead to problems when dealing with idiomatic multiword expressions (MWEs), which are inherently less frequent in natural text. As such, this work explores sample efficient methods of idiomaticity detection. In particular we study the impact of Pattern Exploit Training (PET), a few-shot method of classification, and BERTRAM, an efficient method of creating contextual embeddings, on the task of idiomaticity detection. In addition, to further explore generalisability, we focus on the identification of MWEs not present in the training data. Our experiments show that while these methods improve performance on English, they are much less effective on Portuguese and Galician, leading to an overall performance about on par with vanilla mBERT. Regardless, we believe sample efficient methods for both identifying and representing potentially idiomatic MWEs are very encouraging and hold significant potential for future exploration.
We propose a type-controlled framework for inquisitive question generation. We annotate an inquisitive question dataset with question types, train question type classifiers, and finetune models for type-controlled question generation. Empirical results demonstrate that we can generate a variety of questions that adhere to specific types while drawing from the source texts. We also investigate strategies for selecting a single question from a generated set, considering both an informative vs.~inquisitive question classifier and a pairwise ranker trained from a small set of expert annotations. Question selection using the pairwise ranker yields strong results in automatic and manual evaluation. Our human evaluation assesses multiple aspects of the generated questions, finding that the ranker chooses questions with the best syntax (4.59), semantics (4.37), and inquisitiveness (3.92) on a scale of 1-5, even rivaling the performance of human-written questions.
Discovering latent topics from text corpora has been studied for decades. Many existing topic models adopt a fully unsupervised setting, and their discovered topics may not cater to users' particular interests due to their inability of leveraging user guidance. Although there exist seed-guided topic discovery approaches that leverage user-provided seeds to discover topic-representative terms, they are less concerned with two factors: (1) the existence of out-of-vocabulary seeds and (2) the power of pre-trained language models (PLMs). In this paper, we generalize the task of seed-guided topic discovery to allow out-of-vocabulary seeds. We propose a novel framework, named SeeTopic, wherein the general knowledge of PLMs and the local semantics learned from the input corpus can mutually benefit each other. Experiments on three real datasets from different domains demonstrate the effectiveness of SeeTopic in terms of topic coherence, accuracy, and diversity.
Existing Visual Question Answering (VQA) models have explored various visual relationships between objects in the image to answer complex questions, which inevitably introduces irrelevant information brought by inaccurate object detection and text grounding. To address the problem, we propose a Question-Driven Graph Fusion Network (QD-GFN). It first models semantic, spatial, and implicit visual relations in images by three graph attention networks, then question information is utilized to guide the aggregation process of the three graphs, further, our QD-GFN adopts an object filtering mechanism to remove question-irrelevant objects contained in the image. Experiment results demonstrate that our QD-GFN outperforms the prior state-of-the-art on both VQA 2.0 and VQA-CP v2 datasets. Further analysis shows that both the novel graph aggregation method and object filtering mechanism play a significant role in improving the performance of the model.
Eye tracking data during reading is a useful source of information to understand the cognitive processes that take place during language comprehension processes. Different languages account for different brain triggers , however there seems to be some uniform indicators. In this paper, we describe our submission to the CMCL 2022 shared task on predicting human reading patterns for multi-lingual dataset. Our model uses text representations from transformers and some hand engineered features with a regression layer on top to predict statistical measures of mean and standard deviation for 2 main eye-tracking features. We train an end to end model to extract meaningful information from different languages and test our model on two seperate datasets. We compare different transformer models and show ablation studies affecting model performance. Our final submission ranked 4th place for SubTask-1 and 1st place for SubTask-2 for the shared task.
Biclustering is an unsupervised machine learning technique that simultaneously clusters rows and columns in a data matrix. Biclustering has emerged as an important approach and plays an essential role in various applications such as bioinformatics, text mining, and pattern recognition. However, finding significant biclusters is an NP-hard problem that can be formulated as an optimization problem. Therefore, different metaheuristics have been applied to biclustering problems because of their exploratory capability of solving complex optimization problems in reasonable computation time. Although various surveys on biclustering have been proposed, there is a lack of a comprehensive survey on the biclustering problem using metaheuristics. This chapter will present a survey of metaheuristics approaches to address the biclustering problem. The review focuses on the underlying optimization methods and their main search components: representation, objective function, and variation operators. A specific discussion on single versus multi-objective approaches is presented. Finally, some emerging research directions are presented.
Representations of events described in text are important for various tasks. In this work, we present SWCC: a Simultaneous Weakly supervised Contrastive learning and Clustering framework for event representation learning. SWCC learns event representations by making better use of co-occurrence information of events. Specifically, we introduce a weakly supervised contrastive learning method that allows us to consider multiple positives and multiple negatives, and a prototype-based clustering method that avoids semantically related events being pulled apart. For model training, SWCC learns representations by simultaneously performing weakly supervised contrastive learning and prototype-based clustering. Experimental results show that SWCC outperforms other baselines on Hard Similarity and Transitive Sentence Similarity tasks. In addition, a thorough analysis of the prototype-based clustering method demonstrates that the learned prototype vectors are able to implicitly capture various relations between events.