Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

Introducing Inter-Relatedness between Wikipedia Articles in Explicit Semantic Analysis

Dec 01, 2020
Naveen Elango, Pawan Prasad K

Explicit Semantic Analysis (ESA) is a technique used to represent a piece of text as a vector in the space of concepts, such as Articles found in Wikipedia. We propose a methodology to incorporate knowledge of Inter-relatedness between Wikipedia Articles to the vectors obtained from ESA using a technique called Retrofitting to improve the performance of subsequent tasks that use ESA to form vector embeddings. Especially we use an undirected Graph to represent this knowledge with nodes as Articles and edges as inter relations between two Articles. Here, we also emphasize how the ESA step could be seen as a predominantly bottom-up approach using a corpus to come up with vector representations and the incorporation of top-down knowledge which is the relations between Articles to further improve it. We test our hypothesis on several smaller subsets of the Wikipedia corpus and show that our proposed methodology leads to decent improvements in performance measures including Spearman's Rank correlation coefficient in most cases.

* 16 pages 

  Access Paper or Ask Questions

Joint Masked CPC and CTC Training for ASR

Oct 30, 2020
Chaitanya Talnikar, Tatiana Likhomanenko, Ronan Collobert, Gabriel Synnaeve

Self-supervised learning (SSL) has shown promise in learning representations of audio that are useful for automatic speech recognition (ASR). But, training SSL models like wav2vec~2.0 requires a two-stage pipeline. In this paper we demonstrate a single-stage training of ASR models that can utilize both unlabeled and labeled data. During training, we alternately minimize two losses: an unsupervised masked Contrastive Predictive Coding (CPC) loss and the supervised audio-to-text alignment loss Connectionist Temporal Classification (CTC). We show that this joint training method directly optimizes performance for the downstream ASR task using unsupervised data while achieving similar word error rates to wav2vec~2.0 on the Librispeech 100-hour dataset. Finally, we postulate that solving the contrastive task is a regularization for the supervised CTC loss.


  Access Paper or Ask Questions

Melody-Conditioned Lyrics Generation with SeqGANs

Oct 28, 2020
Yihao Chen, Alexander Lerch

Automatic lyrics generation has received attention from both music and AI communities for years. Early rule-based approaches have~---due to increases in computational power and evolution in data-driven models---~mostly been replaced with deep-learning-based systems. Many existing approaches, however, either rely heavily on prior knowledge in music and lyrics writing or oversimplify the task by largely discarding melodic information and its relationship with the text. We propose an end-to-end melody-conditioned lyrics generation system based on Sequence Generative Adversarial Networks (SeqGAN), which generates a line of lyrics given the corresponding melody as the input. Furthermore, we investigate the performance of the generator with an additional input condition: the theme or overarching topic of the lyrics to be generated. We show that the input conditions have no negative impact on the evaluation metrics while enabling the network to produce more meaningful results.


  Access Paper or Ask Questions

PoinT-5: Pointer Network and T-5 based Financial NarrativeSummarisation

Oct 12, 2020
Abhishek Singh

Companies provide annual reports to their shareholders at the end of the financial year that describes their operations and financial conditions. The average length of these reports is 80, and it may extend up to 250 pages long. In this paper, we propose our methodology PoinT-5 (the combination of Pointer Network and T-5 (Test-to-text transfer Transformer) algorithms) that we used in the Financial Narrative Summarisation (FNS) 2020 task. The proposed method uses pointer networks to extract important narrative sentences from the report, and then T-5 is used to paraphrase extracted sentences into a concise yet informative sentence. We evaluate our method using ROUGE-N (1,2), L, and SU4. The proposed method achieves the highest precision scores in all the metrics and highest F1 scores in ROUGE1, and LCS and the only solution to cross the MUSE solution baseline in ROUGE-LCS metrics.

* Accepted in FNS2020 

  Access Paper or Ask Questions

Lifelong Language Knowledge Distillation

Oct 05, 2020
Yung-Sung Chuang, Shang-Yu Su, Yun-Nung Chen

It is challenging to perform lifelong language learning (LLL) on a stream of different tasks without any performance degradation comparing to the multi-task counterparts. To address this issue, we present Lifelong Language Knowledge Distillation (L2KD), a simple but efficient method that can be easily applied to existing LLL architectures in order to mitigate the degradation. Specifically, when the LLL model is trained on a new task, we assign a teacher model to first learn the new task, and pass the knowledge to the LLL model via knowledge distillation. Therefore, the LLL model can better adapt to the new task while keeping the previously learned knowledge. Experiments show that the proposed L2KD consistently improves previous state-of-the-art models, and the degradation comparing to multi-task models in LLL tasks is well mitigated for both sequence generation and text classification tasks.

* EMNLP 2020 long paper 

  Access Paper or Ask Questions

Differentially Private Representation for NLP: Formal Guarantee and An Empirical Study on Privacy and Fairness

Oct 03, 2020
Lingjuan Lyu, Xuanli He, Yitong Li

It has been demonstrated that hidden representation learned by a deep model can encode private information of the input, hence can be exploited to recover such information with reasonable accuracy. To address this issue, we propose a novel approach called Differentially Private Neural Representation (DPNR) to preserve the privacy of the extracted representation from text. DPNR utilises Differential Privacy (DP) to provide a formal privacy guarantee. Further, we show that masking words via dropout can further enhance privacy. To maintain utility of the learned representation, we integrate DP-noisy representation into a robust training process to derive a robust target model, which also helps for model fairness over various demographic variables. Experimental results on benchmark datasets under various parameter settings demonstrate that DPNR largely reduces privacy leakage without significantly sacrificing the main task performance.

* accepted to Findings of EMNLP 2020 

  Access Paper or Ask Questions

Computer-Generated Music for Tabletop Role-Playing Games

Aug 16, 2020
Lucas N. Ferreira, Levi H. S. Lelis, Jim Whitehead

In this paper we present Bardo Composer, a system to generate background music for tabletop role-playing games. Bardo Composer uses a speech recognition system to translate player speech into text, which is classified according to a model of emotion. Bardo Composer then uses Stochastic Bi-Objective Beam Search, a variant of Stochastic Beam Search that we introduce in this paper, with a neural model to generate musical pieces conveying the desired emotion. We performed a user study with 116 participants to evaluate whether people are able to correctly identify the emotion conveyed in the pieces generated by the system. In our study we used pieces generated for Call of the Wild, a Dungeons and Dragons campaign available on YouTube. Our results show that human subjects could correctly identify the emotion of the generated music pieces as accurately as they were able to identify the emotion of pieces written by humans.

* To be published in the 16th AAAI Conference ON Artificial Intelligence and Interactive Digital Entertainment 

  Access Paper or Ask Questions

Normalizador Neural de Datas e EndereƧos

Jul 09, 2020
Gustavo Plensack, Paulo Finardi

Documents of any kind present a wide variety of date and address formats, in some cases dates can be written entirely in full or even have different types of separators. The pattern disorder in addresses is even greater due to the greater possibility of interchanging between streets, neighborhoods, cities and states. In the context of natural language processing, problems of this nature are handled by rigid tools such as ReGex or DateParser, which are efficient as long as the expected input is pre-configured. When these algorithms are given an unexpected format, errors and unwanted outputs happen. To circumvent this challenge, we present a solution with deep neural networks state of art T5 that treats non-preconfigured formats of dates and addresses with accuracy above 90% in some cases. With this model, our proposal brings generalization to the task of normalizing dates and addresses. We also deal with this problem with noisy data that simulates possible errors in the text.

* 7 pages, in Portuguese, 5 tables 

  Access Paper or Ask Questions

scb-mt-en-th-2020: A Large English-Thai Parallel Corpus

Jul 07, 2020
Lalita Lowphansirikul, Charin Polpanumas, Attapol T. Rutherford, Sarana Nutanong

The primary objective of our work is to build a large-scale English-Thai dataset for machine translation. We construct an English-Thai machine translation dataset with over 1 million segment pairs, curated from various sources, namely news, Wikipedia articles, SMS messages, task-based dialogs, web-crawled data and government documents. Methodology for gathering data, building parallel texts and removing noisy sentence pairs are presented in a reproducible manner. We train machine translation models based on this dataset. Our models' performance are comparable to that of Google Translation API (as of May 2020) for Thai-English and outperform Google when the Open Parallel Corpus (OPUS) is included in the training data for both Thai-English and English-Thai translation. The dataset, pre-trained models, and source code to reproduce our work are available for public use.

* 35 pages, 4 figures 

  Access Paper or Ask Questions

Hierarchically Local Tasks and Deep Convolutional Networks

Jun 29, 2020
Arturo Deza, Qianli Liao, Andrzej Banburski, Tomaso Poggio

The main success stories of deep learning, starting with ImageNet, depend on convolutional networks, which on certain tasks perform significantly better than traditional shallow classifiers, such as support vector machines. Is there something special about deep convolutional networks that other learning machines do not possess? Recent results in approximation theory have shown that there is an exponential advantage of deep convolutional-like networks in approximating functions with hierarchical locality in their compositional structure. These mathematical results, however, do not say which tasks are expected to have input-output functions with hierarchical locality. Among all the possible hierarchically local tasks in vision, text and speech we explore a few of them experimentally by studying how they are affected by disrupting locality in the input images. We also discuss a taxonomy of tasks ranging from local, to hierarchically local, to global and make predictions about the type of networks required to perform efficiently on these different types of tasks.

* A pre-print. Submitted to the Conference of Neural Information Processing Systems (NeurIPS) 2020 

  Access Paper or Ask Questions

<<
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
>>