Named Entity Recognition (NER) is a fundamental task in Natural Language Processing, concerned with identifying spans of text expressing references to entities. NER research is often focused on flat entities only (flat NER), ignoring the fact that entity references can be nested, as in [Bank of [China]] (Finkel and Manning, 2009). In this paper, we use ideas from graph-based dependency parsing to provide our model a global view on the input via a biaffine model (Dozat and Manning, 2017). The biaffine model scores pairs of start and end tokens in a sentence which we use to explore all spans, so that the model is able to predict named entities accurately. We show that the model works well for both nested and flat NER through evaluation on 8 corpora and achieving SoTA performance on all of them, with accuracy gains of up to 2.2 percentage points.
The demand for fast and accurate incremental speech recognition increases as the applications of automatic speech recognition (ASR) proliferate. Incremental speech recognizers output chunks of partially recognized words while the user is still talking. Partial results can be revised before the ASR finalizes its hypothesis, causing instability issues. We analyze the quality and stability of on-device streaming end-to-end (E2E) ASR models. We first introduce a novel set of metrics that quantify the instability at word and segment levels. We study the impact of several model training techniques that improve E2E model qualities but degrade model stability. We categorize the causes of instability and explore various solutions to mitigate them in a streaming E2E ASR system. Index Terms: ASR, stability, end-to-end, text normalization,on-device, RNN-T
The performance of neural machine translation systems is commonly evaluated in terms of BLEU. However, due to its reliance on target language properties and generation, the BLEU metric does not allow an assessment of which translation directions are more difficult to model. In this paper, we propose cross-mutual information (XMI): an asymmetric information-theoretic metric of machine translation difficulty that exploits the probabilistic nature of most neural machine translation models. XMI allows us to better evaluate the difficulty of translating text into the target language while controlling for the difficulty of the target-side generation component independent of the translation task. We then present the first systematic and controlled study of cross-lingual translation difficulties using modern neural translation systems. Code for replicating our experiments is available online at https://github.com/e-bug/nmt-difficulty.
Neural networks lack the ability to reason about qualitative physics and so cannot generalize to scenarios and tasks unseen during training. We propose ESPRIT, a framework for commonsense reasoning about qualitative physics in natural language that generates interpretable descriptions of physical events. We use a two-step approach of first identifying the pivotal physical events in an environment and then generating natural language descriptions of those events using a data-to-text approach. Our framework learns to generate explanations of how the physical simulation will causally evolve so that an agent or a human can easily reason about a solution using those interpretable descriptions. Human evaluations indicate that ESPRIT produces crucial fine-grained details and has high coverage of physical concepts compared to even human annotations. Dataset, code and documentation are available at https://github.com/salesforce/esprit.
We propose PeTra, a memory-augmented neural network designed to track entities in its memory slots. PeTra is trained using sparse annotation from the GAP pronoun resolution dataset and outperforms a prior memory model on the task while using a simpler architecture. We empirically compare key modeling choices, finding that we can simplify several aspects of the design of the memory module while retaining strong performance. To measure the people tracking capability of memory models, we (a) propose a new diagnostic evaluation based on counting the number of unique entities in text, and (b) conduct a small scale human evaluation to compare evidence of people tracking in the memory logs of PeTra relative to a previous approach. PeTra is highly effective in both evaluations, demonstrating its ability to track people in its memory despite being trained with limited annotation.
In the last few years, pre-trained neural architectures have provided impressive improvements across several NLP tasks. Still, generative language models are available mainly for English. We develop GePpeTto, the first generative language model for Italian, built using the GPT-2 architecture. We provide a thorough analysis of GePpeTto's quality by means of both an automatic and a human-based evaluation. The automatic assessment consists in (i) calculating perplexity across different genres and (ii) a profiling analysis over GePpeTto's writing characteristics. We find that GePpeTto's production is a sort of bonsai version of human production, with shorter but yet complex sentences. Human evaluation is performed over a sentence completion task, where GePpeTto's output is judged as natural more often than not, and much closer to the original human texts than to a simpler language model which we take as baseline.
To effectively tackle sexism online, research has focused on automated methods for detecting sexism. In this paper, we use items from psychological scales and adversarial sample generation to 1) provide a codebook for different types of sexism in theory-driven scales and in social media text; 2) test the performance of different sexism detection methods across multiple data sets; 3) provide an overview of strategies employed by humans to remove sexism through minimal changes. Results highlight that current methods seem inadequate in detecting all but the most blatant forms of sexism and do not generalize well to out-of-domain examples. By providing a scale-based codebook for sexism and insights into what makes a statement sexist, we hope to contribute to the development of better and broader models for sexism detection, including reflections on theory-driven approaches to data collection.
With the abundance of automatic meeting transcripts, meeting summarization is of great interest to both participants and other parties. Traditional methods of summarizing meetings depend on complex multi-step pipelines that make joint optimization intractable. Meanwhile, there are a handful of deep neural models for text summarization and dialogue systems. However, the semantic structure and styles of meeting transcripts are quite different from articles and conversations. In this paper, we propose a novel end-to-end abstractive summary network that adapts to the meeting scenario. We design a role vector to depict the difference among speakers and a hierarchical structure to accommodate long meeting transcripts. Empirical results show that our model considerably outperforms previous approaches in both automatic metrics and human evaluation. For example, in the ICSI dataset, the ROUGE-1 score increases from 32.00% to 39.51%.