Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

A Top-Down Neural Architecture towards Text-Level Parsing of Discourse Rhetorical Structure

May 21, 2020
Longyin Zhang, Yuqing Xing, Fang Kong, Peifeng Li, Guodong Zhou

Due to its great importance in deep natural language understanding and various down-stream applications, text-level parsing of discourse rhetorical structure (DRS) has been drawing more and more attention in recent years. However, all the previous studies on text-level discourse parsing adopt bottom-up approaches, which much limit the DRS determination on local information and fail to well benefit from global information of the overall discourse. In this paper, we justify from both computational and perceptive points-of-view that the top-down architecture is more suitable for text-level DRS parsing. On the basis, we propose a top-down neural architecture toward text-level DRS parsing. In particular, we cast discourse parsing as a recursive split point ranking task, where a split point is classified to different levels according to its rank and the elementary discourse units (EDUs) associated with it are arranged accordingly. In this way, we can determine the complete DRS as a hierarchical tree structure via an encoder-decoder with an internal stack. Experimentation on both the English RST-DT corpus and the Chinese CDTB corpus shows the great effectiveness of our proposed top-down approach towards text-level DRS parsing.

* Accepted by ACL2020 

  Access Paper or Ask Questions

Learning to Select Bi-Aspect Information for Document-Scale Text Content Manipulation

Feb 24, 2020
Xiaocheng Feng, Yawei Sun, Bing Qin, Heng Gong, Yibo Sun, Wei Bi, Xiaojiang Liu, Ting Liu

In this paper, we focus on a new practical task, document-scale text content manipulation, which is the opposite of text style transfer and aims to preserve text styles while altering the content. In detail, the input is a set of structured records and a reference text for describing another recordset. The output is a summary that accurately describes the partial content in the source recordset with the same writing style of the reference. The task is unsupervised due to lack of parallel data, and is challenging to select suitable records and style words from bi-aspect inputs respectively and generate a high-fidelity long document. To tackle those problems, we first build a dataset based on a basketball game report corpus as our testbed, and present an unsupervised neural model with interactive attention mechanism, which is used for learning the semantic relationship between records and reference texts to achieve better content transfer and better style preservation. In addition, we also explore the effectiveness of the back-translation in our task for constructing some pseudo-training pairs. Empirical results show superiority of our approaches over competitive methods, and the models also yield a new state-of-the-art result on a sentence-level dataset.

* accepted by AAAI2020 

  Access Paper or Ask Questions

SADGA: Structure-Aware Dual Graph Aggregation Network for Text-to-SQL

Nov 01, 2021
Ruichu Cai, Jinjie Yuan, Boyan Xu, Zhifeng Hao

The Text-to-SQL task, aiming to translate the natural language of the questions into SQL queries, has drawn much attention recently. One of the most challenging problems of Text-to-SQL is how to generalize the trained model to the unseen database schemas, also known as the cross-domain Text-to-SQL task. The key lies in the generalizability of (i) the encoding method to model the question and the database schema and (ii) the question-schema linking method to learn the mapping between words in the question and tables/columns in the database schema. Focusing on the above two key issues, we propose a Structure-Aware Dual Graph Aggregation Network (SADGA) for cross-domain Text-to-SQL. In SADGA, we adopt the graph structure to provide a unified encoding model for both the natural language question and database schema. Based on the proposed unified modeling, we further devise a structure-aware aggregation method to learn the mapping between the question-graph and schema-graph. The structure-aware aggregation method is featured with Global Graph Linking, Local Graph Linking, and Dual-Graph Aggregation Mechanism. We not only study the performance of our proposal empirically but also achieved 3rd place on the challenging Text-to-SQL benchmark Spider at the time of writing.

* Paper accepted at the 35th Conference on Neural Information Processing Systems(NeurIPS 2021) 

  Access Paper or Ask Questions

Collaborative Training of GANs in Continuous and Discrete Spaces for Text Generation

Nov 04, 2020
Yanghoon Kim, Seungpil Won, Seunghyun Yoon, Kyomin Jung

Applying generative adversarial networks (GANs) to text-related tasks is challenging due to the discrete nature of language. One line of research resolves this issue by employing reinforcement learning (RL) and optimizing the next-word sampling policy directly in a discrete action space. Such methods compute the rewards from complete sentences and avoid error accumulation due to exposure bias. Other approaches employ approximation techniques that map the text to continuous representation in order to circumvent the non-differentiable discrete process. Particularly, autoencoder-based methods effectively produce robust representations that can model complex discrete structures. In this paper, we propose a novel text GAN architecture that promotes the collaborative training of the continuous-space and discrete-space methods. Our method employs an autoencoder to learn an implicit data manifold, providing a learning objective for adversarial training in a continuous space. Furthermore, the complete textual output is directly evaluated and updated via RL in a discrete space. The collaborative interplay between the two adversarial trainings effectively regularize the text representations in different spaces. The experimental results on three standard benchmark datasets show that our model substantially outperforms state-of-the-art text GANs with respect to quality, diversity, and global consistency.


  Access Paper or Ask Questions

A Deep Local and Global Scene-Graph Matching for Image-Text Retrieval

Jun 04, 2021
Manh-Duy Nguyen, Binh T. Nguyen, Cathal Gurrin

Conventional approaches to image-text retrieval mainly focus on indexing visual objects appearing in pictures but ignore the interactions between these objects. Such objects occurrences and interactions are equivalently useful and important in this field as they are usually mentioned in the text. Scene graph presentation is a suitable method for the image-text matching challenge and obtained good results due to its ability to capture the inter-relationship information. Both images and text are represented in scene graph levels and formulate the retrieval challenge as a scene graph matching challenge. In this paper, we introduce the Local and Global Scene Graph Matching (LGSGM) model that enhances the state-of-the-art method by integrating an extra graph convolution network to capture the general information of a graph. Specifically, for a pair of scene graphs of an image and its caption, two separate models are used to learn the features of each graph's nodes and edges. Then a Siamese-structure graph convolution model is employed to embed graphs into vector forms. We finally combine the graph-level and the vector-level to calculate the similarity of this image-text pair. The empirical experiments show that our enhancement with the combination of levels can improve the performance of the baseline method by increasing the recall by more than 10% on the Flickr30k dataset.


  Access Paper or Ask Questions

StylePTB: A Compositional Benchmark for Fine-grained Controllable Text Style Transfer

Apr 12, 2021
Yiwei Lyu, Paul Pu Liang, Hai Pham, Eduard Hovy, Barnabás Póczos, Ruslan Salakhutdinov, Louis-Philippe Morency

Text style transfer aims to controllably generate text with targeted stylistic changes while maintaining core meaning from the source sentence constant. Many of the existing style transfer benchmarks primarily focus on individual high-level semantic changes (e.g. positive to negative), which enable controllability at a high level but do not offer fine-grained control involving sentence structure, emphasis, and content of the sentence. In this paper, we introduce a large-scale benchmark, StylePTB, with (1) paired sentences undergoing 21 fine-grained stylistic changes spanning atomic lexical, syntactic, semantic, and thematic transfers of text, as well as (2) compositions of multiple transfers which allow modeling of fine-grained stylistic changes as building blocks for more complex, high-level transfers. By benchmarking existing methods on StylePTB, we find that they struggle to model fine-grained changes and have an even more difficult time composing multiple styles. As a result, StylePTB brings novel challenges that we hope will encourage future research in controllable text style transfer, compositional models, and learning disentangled representations. Solving these challenges would present important steps towards controllable text generation.

* NAACL 2021, code available at https://github.com/lvyiwei1/StylePTB/ 

  Access Paper or Ask Questions

Computer Vision and Conflicting Values: Describing People with Automated Alt Text

May 26, 2021
Margot Hanley, Solon Barocas, Karen Levy, Shiri Azenkot, Helen Nissenbaum

Scholars have recently drawn attention to a range of controversial issues posed by the use of computer vision for automatically generating descriptions of people in images. Despite these concerns, automated image description has become an important tool to ensure equitable access to information for blind and low vision people. In this paper, we investigate the ethical dilemmas faced by companies that have adopted the use of computer vision for producing alt text: textual descriptions of images for blind and low vision people, We use Facebook's automatic alt text tool as our primary case study. First, we analyze the policies that Facebook has adopted with respect to identity categories, such as race, gender, age, etc., and the company's decisions about whether to present these terms in alt text. We then describe an alternative -- and manual -- approach practiced in the museum community, focusing on how museums determine what to include in alt text descriptions of cultural artifacts. We compare these policies, using notable points of contrast to develop an analytic framework that characterizes the particular apprehensions behind these policy choices. We conclude by considering two strategies that seem to sidestep some of these concerns, finding that there are no easy ways to avoid the normative dilemmas posed by the use of computer vision to automate alt text.

* Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society (AIES '21) 

  Access Paper or Ask Questions

Improving Diversity of Neural Text Generation via Inverse Probability Weighting

Mar 13, 2021
Xinran Zhang, Maosong Sun, Jiafeng Liu, Xiaobing Li

The neural network based text generation suffers from the text degeneration issue such as repetition. Although top-k sampling and nucleus sampling outperform beam search based decoding methods, they only focus on truncating the "tail" of the distribution and do not address the "head" part, which we show might contain tedious or even repetitive candidates with high probability that lead to repetition loops. They also do not fully address the issue that human text does not always favor high probability words. To explore improved diversity for text generation, we propose a heuristic sampling method inspired by inverse probability weighting. We propose to use interquartile range of the predicted distribution to determine the "head" part, then permutate and rescale the "head" with inverse probability. This aims at decreasing the probability for the tedious and possibly repetitive candidates with higher probability, and increasing the probability for the rational but more surprising candidates with lower probability. The proposed algorithm provides a controllable variation on the predicted distribution which enhances diversity without compromising rationality of the distribution. We use pre-trained language model to compare our algorithm with nucleus sampling. Results show that our algorithm can effectively increase the diversity of generated samples while achieving close resemblance to human text.


  Access Paper or Ask Questions

<<
98
99
100
101
102
103
104
105
106
107
108
109
110
>>