Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Text Classification": models, code, and papers

A Sentence-level Hierarchical BERT Model for Document Classification with Limited Labelled Data

Jun 12, 2021
Jinghui Lu, Maeve Henchion, Ivan Bacher, Brian Mac Namee

Training deep learning models with limited labelled data is an attractive scenario for many NLP tasks, including document classification. While with the recent emergence of BERT, deep learning language models can achieve reasonably good performance in document classification with few labelled instances, there is a lack of evidence in the utility of applying BERT-like models on long document classification. This work introduces a long-text-specific model -- the Hierarchical BERT Model (HBM) -- that learns sentence-level features of the text and works well in scenarios with limited labelled data. Various evaluation experiments have demonstrated that HBM can achieve higher performance in document classification than the previous state-of-the-art methods with only 50 to 200 labelled instances, especially when documents are long. Also, as an extra benefit of HBM, the salient sentences identified by learned HBM are useful as explanations for labelling documents based on a user study.

  

Small-text: Active Learning for Text Classification in Python

Jul 21, 2021
Christopher Schröder, Lydia Müller, Andreas Niekler, Martin Potthast

We present small-text, a simple modular active learning library, which offers pool-based active learning for text classification in Python. It comes with various pre-implemented state-of-the-art query strategies, including some which can leverage the GPU. Clearly defined interfaces allow to combine a multitude of such query strategies with different classifiers, thereby facilitating a quick mix and match, and enabling a rapid development of both active learning experiments and applications. To make various classifiers accessible in a consistent way, it integrates several well-known machine learning libraries, namely, scikit-learn, PyTorch, and huggingface transformers -- for which the latter integrations are available as optionally installable extensions. The library is available under the MIT License at https://github.com/webis-de/small-text.

* preprint 
  

Label Mask for Multi-Label Text Classification

Jun 18, 2021
Rui Song, Xingbing Chen, Zelong Liu, Haining An, Zhiqi Zhang, Xiaoguang Wang, Hao Xu

One of the key problems in multi-label text classification is how to take advantage of the correlation among labels. However, it is very challenging to directly model the correlations among labels in a complex and unknown label space. In this paper, we propose a Label Mask multi-label text classification model (LM-MTC), which is inspired by the idea of cloze questions of language model. LM-MTC is able to capture implicit relationships among labels through the powerful ability of pre-train language models. On the basis, we assign a different token to each potential label, and randomly mask the token with a certain probability to build a label based Masked Language Model (MLM). We train the MTC and MLM together, further improving the generalization ability of the model. A large number of experiments on multiple datasets demonstrate the effectiveness of our method.

  

On Extending Neural Networks with Loss Ensembles for Text Classification

Nov 14, 2017
Hamideh Hajiabadi, Diego Molla-Aliod, Reza Monsefi

Ensemble techniques are powerful approaches that combine several weak learners to build a stronger one. As a meta learning framework, ensemble techniques can easily be applied to many machine learning techniques. In this paper we propose a neural network extended with an ensemble loss function for text classification. The weight of each weak loss function is tuned within the training phase through the gradient propagation optimization method of the neural network. The approach is evaluated on several text classification datasets. We also evaluate its performance in various environments with several degrees of label noise. Experimental results indicate an improvement of the results and strong resilience against label noise in comparison with other methods.

* 5 pages, 5 tables, 1 figure. Camera-ready submitted to The 2017 Australasian Language Technology Association Workshop (ALTA 2017) 
  

Image-based Natural Language Understanding Using 2D Convolutional Neural Networks

Nov 06, 2018
Erinc Merdivan, Anastasios Vafeiadis, Dimitrios Kalatzis, Sten Hanke, Johannes Kropf, Konstantinos Votis, Dimitrios Giakoumis, Dimitrios Tzovaras, Liming Chen, Raouf Hamzaoui, Matthieu Geist

We propose a new approach to natural language understanding in which we consider the input text as an image and apply 2D Convolutional Neural Networks to learn the local and global semantics of the sentences from the variations ofthe visual patterns of words. Our approach demonstrates that it is possible to get semantically meaningful features from images with text without using optical character recognition and sequential processing pipelines, techniques that traditional Natural Language Understanding algorithms require. To validate our approach, we present results for two applications: text classification and dialog modeling. Using a 2D Convolutional Neural Network, we were able to outperform the state-of-art accuracy results of non-Latin alphabet-based text classification and achieved promising results for eight text classification datasets. Furthermore, our approach outperformed the memory networks when using out of vocabulary entities fromtask 4 of the bAbI dialog dataset.

* Natural Language Processing (NLP), Sentiment Analysis, Dialogue Modeling 
  

Evaluation of Output Embeddings for Fine-Grained Image Classification

Aug 28, 2015
Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, Bernt Schiele

Image classification has advanced significantly in recent years with the availability of large-scale image sets. However, fine-grained classification remains a major challenge due to the annotation cost of large numbers of fine-grained categories. This project shows that compelling classification performance can be achieved on such categories even without labeled training data. Given image and class embeddings, we learn a compatibility function such that matching embeddings are assigned a higher score than mismatching ones; zero-shot classification of an image proceeds by finding the label yielding the highest joint compatibility score. We use state-of-the-art image features and focus on different supervised attributes and unsupervised output embeddings either derived from hierarchies or learned from unlabeled text corpora. We establish a substantially improved state-of-the-art on the Animals with Attributes and Caltech-UCSD Birds datasets. Most encouragingly, we demonstrate that purely unsupervised output embeddings (learned from Wikipedia and improved with fine-grained text) achieve compelling results, even outperforming the previous supervised state-of-the-art. By combining different output embeddings, we further improve results.

* @inproceedings {ARWLS15, title = {Evaluation of Output Embeddings for Fine-Grained Image Classification}, booktitle = {IEEE Computer Vision and Pattern Recognition}, year = {2015}, author = {Zeynep Akata and Scott Reed and Daniel Walter and Honglak Lee and Bernt Schiele} } 
  

Automated Big Text Security Classification

Oct 21, 2016
Khudran Alzhrani, Ethan M. Rudd, Terrance E. Boult, C. Edward Chow

In recent years, traditional cybersecurity safeguards have proven ineffective against insider threats. Famous cases of sensitive information leaks caused by insiders, including the WikiLeaks release of diplomatic cables and the Edward Snowden incident, have greatly harmed the U.S. government's relationship with other governments and with its own citizens. Data Leak Prevention (DLP) is a solution for detecting and preventing information leaks from within an organization's network. However, state-of-art DLP detection models are only able to detect very limited types of sensitive information, and research in the field has been hindered due to the lack of available sensitive texts. Many researchers have focused on document-based detection with artificially labeled "confidential documents" for which security labels are assigned to the entire document, when in reality only a portion of the document is sensitive. This type of whole-document based security labeling increases the chances of preventing authorized users from accessing non-sensitive information within sensitive documents. In this paper, we introduce Automated Classification Enabled by Security Similarity (ACESS), a new and innovative detection model that penetrates the complexity of big text security classification/detection. To analyze the ACESS system, we constructed a novel dataset, containing formerly classified paragraphs from diplomatic cables made public by the WikiLeaks organization. To our knowledge this paper is the first to analyze a dataset that contains actual formerly sensitive information annotated at paragraph granularity.

* 2016 IEEE International Conference on Intelligence and Security Informatics (ISI) 
* Pre-print of Best Paper Award IEEE Intelligence and Security Informatics (ISI) 2016 Manuscript 
  

AnANet: Modeling Association and Alignment for Cross-modal Correlation Classification

Sep 02, 2021
Nan Xu, Junyan Wang, Yuan Tian, Ruike Zhang, Wenji Mao

The explosive increase of multimodal data makes a great demand in many cross-modal applications that follow the strict prior related assumption. Thus researchers study the definition of cross-modal correlation category and construct various classification systems and predictive models. However, those systems pay more attention to the fine-grained relevant types of cross-modal correlation, ignoring lots of implicit relevant data which are often divided into irrelevant types. What's worse is that none of previous predictive models manifest the essence of cross-modal correlation according to their definition at the modeling stage. In this paper, we present a comprehensive analysis of the image-text correlation and redefine a new classification system based on implicit association and explicit alignment. To predict the type of image-text correlation, we propose the Association and Alignment Network according to our proposed definition (namely AnANet) which implicitly represents the global discrepancy and commonality between image and text and explicitly captures the cross-modal local relevance. The experimental results on our constructed new image-text correlation dataset show the effectiveness of our model.

  

BertGCN: Transductive Text Classification by Combining GCN and BERT

May 16, 2021
Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han, Kun Kuang, Jiwei Li, Fei Wu

In this work, we propose BertGCN, a model that combines large scale pretraining and transductive learning for text classification. BertGCN constructs a heterogeneous graph over the dataset and represents documents as nodes using BERT representations. By jointly training the BERT and GCN modules within BertGCN, the proposed model is able to leverage the advantages of both worlds: large-scale pretraining which takes the advantage of the massive amount of raw data and transductive learning which jointly learns representations for both training data and unlabeled test data by propagating label influence through graph convolution. Experiments show that BertGCN achieves SOTA performances on a wide range of text classification datasets. Code is available at https://github.com/ZeroRin/BertGCN.

  
<<
39
40
41
42
43
44
45
46
47
48
49
50
>>