Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Text Classification": models, code, and papers

Text Data Augmentation: Towards better detection of spear-phishing emails

Jul 04, 2020
Mehdi Regina, Maxime Meyer, Sébastien Goutal

Text data augmentation, i.e. the creation of synthetic textual data from an original text, is challenging as augmentation transformations should take into account language complexity while being relevant to the target Natural Language Processing (NLP) task (e.g. Machine Translation, Question Answering, Text Classification, etc.). Motivated by a business application of Business Email Compromise (BEC) detection, we propose a corpus and task agnostic text augmentation framework combining different methods, utilizing BERT language model, multi-step back-translation and heuristics. We show that our augmentation framework improves performances on several text classification tasks using publicly available models and corpora (SST2 and TREC) as well as on a BEC detection task. We also provide a comprehensive argumentation about the limitations of our augmentation framework.

  
Access Paper or Ask Questions

Progress Notes Classification and Keyword Extraction using Attention-based Deep Learning Models with BERT

Oct 13, 2019
Matthew Tang, Priyanka Gandhi, Md Ahsanul Kabir, Christopher Zou, Jordyn Blakey, Xiao Luo

Despite recent advances in the application of deep learning algorithms to various kinds of medical data, clinical text classification, and extracting information from narrative clinical notes remains a challenging task. The challenges of representing, training and interpreting document classification models are amplified when dealing with small and clinical domain data sets. The objective of this research is to investigate the attention-based deep learning models to classify the de-identified clinical progress notes extracted from a real-world EHR system. The attention-based deep learning models can be used to interpret the models and understand the critical words that drive the correct or incorrect classification of the clinical progress notes. The attention-based models in this research are capable of presenting the human interpretable text classification models. The results show that the fine-tuned BERT with the attention layer can achieve a high classification accuracy of 97.6%, which is higher than the baseline fine-tuned BERT classification model. Furthermore, we demonstrate that the attention-based models can identify relevant keywords that strongly relate to the corresponding clinical categories.

  
Access Paper or Ask Questions

Hierarchical Neural Network Approaches for Long Document Classification

Jan 18, 2022
Snehal Khandve, Vedangi Wagh, Apurva Wani, Isha Joshi, Raviraj Joshi

Text classification algorithms investigate the intricate relationships between words or phrases and attempt to deduce the document's interpretation. In the last few years, these algorithms have progressed tremendously. Transformer architecture and sentence encoders have proven to give superior results on natural language processing tasks. But a major limitation of these architectures is their applicability for text no longer than a few hundred words. In this paper, we explore hierarchical transfer learning approaches for long document classification. We employ pre-trained Universal Sentence Encoder (USE) and Bidirectional Encoder Representations from Transformers (BERT) in a hierarchical setup to capture better representations efficiently. Our proposed models are conceptually simple where we divide the input data into chunks and then pass this through base models of BERT and USE. Then output representation for each chunk is then propagated through a shallow neural network comprising of LSTMs or CNNs for classifying the text data. These extensions are evaluated on 6 benchmark datasets. We show that USE + CNN/LSTM performs better than its stand-alone baseline. Whereas the BERT + CNN/LSTM performs on par with its stand-alone counterpart. However, the hierarchical BERT models are still desirable as it avoids the quadratic complexity of the attention mechanism in BERT. Along with the hierarchical approaches, this work also provides a comparison of different deep learning algorithms like USE, BERT, HAN, Longformer, and BigBird for long document classification. The Longformer approach consistently performs well on most of the datasets.

* Accepted at International Conference on Machine Learning and Computing (ICMLC) 2022 
  
Access Paper or Ask Questions

TextNAS: A Neural Architecture Search Space tailored for Text Representation

Dec 23, 2019
Yujing Wang, Yaming Yang, Yiren Chen, Jing Bai, Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai Tong, Mao Yang, Lidong Zhou

Learning text representation is crucial for text classification and other language related tasks. There are a diverse set of text representation networks in the literature, and how to find the optimal one is a non-trivial problem. Recently, the emerging Neural Architecture Search (NAS) techniques have demonstrated good potential to solve the problem. Nevertheless, most of the existing works of NAS focus on the search algorithms and pay little attention to the search space. In this paper, we argue that the search space is also an important human prior to the success of NAS in different applications. Thus, we propose a novel search space tailored for text representation. Through automatic search, the discovered network architecture outperforms state-of-the-art models on various public datasets on text classification and natural language inference tasks. Furthermore, some of the design principles found in the automatic network agree well with human intuition.

  
Access Paper or Ask Questions

Multi-label classification of promotions in digital leaflets using textual and visual information

Oct 07, 2020
Roberto Arroyo, David Jiménez-Cabello, Javier Martínez-Cebrián

Product descriptions in e-commerce platforms contain detailed and valuable information about retailers assortment. In particular, coding promotions within digital leaflets are of great interest in e-commerce as they capture the attention of consumers by showing regular promotions for different products. However, this information is embedded into images, making it difficult to extract and process for downstream tasks. In this paper, we present an end-to-end approach that classifies promotions within digital leaflets into their corresponding product categories using both visual and textual information. Our approach can be divided into three key components: 1) region detection, 2) text recognition and 3) text classification. In many cases, a single promotion refers to multiple product categories, so we introduce a multi-label objective in the classification head. We demonstrate the effectiveness of our approach for two separated tasks: 1) image-based detection of the descriptions for each individual promotion and 2) multi-label classification of the product categories using the text from the product descriptions. We train and evaluate our models using a private dataset composed of images from digital leaflets obtained by Nielsen. Results show that we consistently outperform the proposed baseline by a large margin in all the experiments.

* Conference on Computational Linguistics (COLING). Workshop on Natural Language Processing in E-Commerce (EcomNLP 2020) 
  
Access Paper or Ask Questions

CoCa: Contrastive Captioners are Image-Text Foundation Models

May 04, 2022
Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, Yonghui Wu

Exploring large-scale pretrained foundation models is of significant interest in computer vision because these models can be quickly transferred to many downstream tasks. This paper presents Contrastive Captioner (CoCa), a minimalist design to pretrain an image-text encoder-decoder foundation model jointly with contrastive loss and captioning loss, thereby subsuming model capabilities from contrastive approaches like CLIP and generative methods like SimVLM. In contrast to standard encoder-decoder transformers where all decoder layers attend to encoder outputs, CoCa omits cross-attention in the first half of decoder layers to encode unimodal text representations, and cascades the remaining decoder layers which cross-attend to the image encoder for multimodal image-text representations. We apply a contrastive loss between unimodal image and text embeddings, in addition to a captioning loss on the multimodal decoder outputs which predicts text tokens autoregressively. By sharing the same computational graph, the two training objectives are computed efficiently with minimal overhead. CoCa is pretrained end-to-end and from scratch on both web-scale alt-text data and annotated images by treating all labels simply as text, seamlessly unifying natural language supervision for representation learning. Empirically, CoCa achieves state-of-the-art performance with zero-shot transfer or minimal task-specific adaptation on a broad range of downstream tasks, spanning visual recognition (ImageNet, Kinetics-400/600/700, Moments-in-Time), crossmodal retrieval (MSCOCO, Flickr30K, MSR-VTT), multimodal understanding (VQA, SNLI-VE, NLVR2), and image captioning (MSCOCO, NoCaps). Notably on ImageNet classification, CoCa obtains 86.3% zero-shot top-1 accuracy, 90.6% with a frozen encoder and learned classification head, and new state-of-the-art 91.0% top-1 accuracy on ImageNet with a finetuned encoder.

* Preprint 
  
Access Paper or Ask Questions

Leveraging Unpaired Text Data for Training End-to-End Speech-to-Intent Systems

Oct 08, 2020
Yinghui Huang, Hong-Kwang Kuo, Samuel Thomas, Zvi Kons, Kartik Audhkhasi, Brian Kingsbury, Ron Hoory, Michael Picheny

Training an end-to-end (E2E) neural network speech-to-intent (S2I) system that directly extracts intents from speech requires large amounts of intent-labeled speech data, which is time consuming and expensive to collect. Initializing the S2I model with an ASR model trained on copious speech data can alleviate data sparsity. In this paper, we attempt to leverage NLU text resources. We implemented a CTC-based S2I system that matches the performance of a state-of-the-art, traditional cascaded SLU system. We performed controlled experiments with varying amounts of speech and text training data. When only a tenth of the original data is available, intent classification accuracy degrades by 7.6% absolute. Assuming we have additional text-to-intent data (without speech) available, we investigated two techniques to improve the S2I system: (1) transfer learning, in which acoustic embeddings for intent classification are tied to fine-tuned BERT text embeddings; and (2) data augmentation, in which the text-to-intent data is converted into speech-to-intent data using a multi-speaker text-to-speech system. The proposed approaches recover 80% of performance lost due to using limited intent-labeled speech.

* 5 pages, published in ICASSP 2020 
  
Access Paper or Ask Questions

PGNet: Real-time Arbitrarily-Shaped Text Spotting with Point Gathering Network

Apr 12, 2021
Pengfei Wang, Chengquan Zhang, Fei Qi, Shanshan Liu, Xiaoqiang Zhang, Pengyuan Lyu, Junyu Han, Jingtuo Liu, Errui Ding, Guangming Shi

The reading of arbitrarily-shaped text has received increasing research attention. However, existing text spotters are mostly built on two-stage frameworks or character-based methods, which suffer from either Non-Maximum Suppression (NMS), Region-of-Interest (RoI) operations, or character-level annotations. In this paper, to address the above problems, we propose a novel fully convolutional Point Gathering Network (PGNet) for reading arbitrarily-shaped text in real-time. The PGNet is a single-shot text spotter, where the pixel-level character classification map is learned with proposed PG-CTC loss avoiding the usage of character-level annotations. With a PG-CTC decoder, we gather high-level character classification vectors from two-dimensional space and decode them into text symbols without NMS and RoI operations involved, which guarantees high efficiency. Additionally, reasoning the relations between each character and its neighbors, a graph refinement module (GRM) is proposed to optimize the coarse recognition and improve the end-to-end performance. Experiments prove that the proposed method achieves competitive accuracy, meanwhile significantly improving the running speed. In particular, in Total-Text, it runs at 46.7 FPS, surpassing the previous spotters with a large margin.

* 10 pages, 8 figures, AAAI 2021 
  
Access Paper or Ask Questions

AraDIC: Arabic Document Classification using Image-Based Character Embeddings and Class-Balanced Loss

Jun 20, 2020
Mahmoud Daif, Shunsuke Kitada, Hitoshi Iyatomi

Classical and some deep learning techniques for Arabic text classification often depend on complex morphological analysis, word segmentation, and hand-crafted feature engineering. These could be eliminated by using character-level features. We propose a novel end-to-end Arabic document classification framework, Arabic document image-based classifier (AraDIC), inspired by the work on image-based character embeddings. AraDIC consists of an image-based character encoder and a classifier. They are trained in an end-to-end fashion using the class balanced loss to deal with the long-tailed data distribution problem. To evaluate the effectiveness of AraDIC, we created and published two datasets, the Arabic Wikipedia title (AWT) dataset and the Arabic poetry (AraP) dataset. To the best of our knowledge, this is the first image-based character embedding framework addressing the problem of Arabic text classification. We also present the first deep learning-based text classifier widely evaluated on modern standard Arabic, colloquial Arabic and classical Arabic. AraDIC shows performance improvement over classical and deep learning baselines by 12.29% and 23.05% for the micro and macro F-score, respectively.

  
Access Paper or Ask Questions

Evolving Character-Level DenseNet Architectures using Genetic Programming

Dec 03, 2020
Trevor Londt, Xiaoying Gao, Peter Andreae

DenseNet architectures have demonstrated impressive performance in image classification tasks, but limited research has been conducted on using character-level DenseNet (char-DenseNet) architectures for text classification tasks. It is not clear what DenseNet architectures are optimal for text classification tasks. The iterative task of designing, training and testing of char-DenseNets is an NP-Hard problem that requires expert domain knowledge. Evolutionary deep learning (EDL) has been used to automatically design CNN architectures for the image classification domain, thereby mitigating the need for expert domain knowledge. This study demonstrates the first work on using EDL to evolve char-DenseNet architectures for text classification tasks. A novel genetic programming-based algorithm (GP-Dense) coupled with an indirect-encoding scheme, facilitates the evolution of performant char DenseNet architectures. The algorithm is evaluated on two popular text datasets, and the best-evolved models are benchmarked against four current state-of-the-art character-level CNN and DenseNet models. Results indicate that the algorithm evolves performant models for both datasets that outperform two of the state-of-the-art models in terms of model accuracy and three of the state-of-the-art models in terms of parameter size.

* Submitted to EvoStar 2021 
  
Access Paper or Ask Questions
<<
32
33
34
35
36
37
38
39
40
41
42
43
44
>>