Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Text Classification": models, code, and papers

Progress Notes Classification and Keyword Extraction using Attention-based Deep Learning Models with BERT

Oct 24, 2019
Matthew Tang, Priyanka Gandhi, Md Ahsanul Kabir, Christopher Zou, Jordyn Blakey, Xiao Luo

Various deep learning algorithms have been developed to analyze different types of clinical data including clinical text classification and extracting information from 'free text' and so on. However, automate the keyword extraction from the clinical notes is still challenging. The challenges include dealing with noisy clinical notes which contain various abbreviations, possible typos, and unstructured sentences. The objective of this research is to investigate the attention-based deep learning models to classify the de-identified clinical progress notes extracted from a real-world EHR system. The attention-based deep learning models can be used to interpret the models and understand the critical words that drive the correct or incorrect classification of the clinical progress notes. The attention-based models in this research are capable of presenting the human interpretable text classification models. The results show that the fine-tuned BERT with the attention layer can achieve a high classification accuracy of 97.6%, which is higher than the baseline fine-tuned BERT classification model. In this research, we also demonstrate that the attention-based models can identify relevant keywords that are strongly related to the clinical progress note categories.

Access Paper or Ask Questions

Convolutional Neural Networks for Toxic Comment Classification

Feb 27, 2018
Spiros V. Georgakopoulos, Sotiris K. Tasoulis, Aristidis G. Vrahatis, Vassilis P. Plagianakos

Flood of information is produced in a daily basis through the global Internet usage arising from the on-line interactive communications among users. While this situation contributes significantly to the quality of human life, unfortunately it involves enormous dangers, since on-line texts with high toxicity can cause personal attacks, on-line harassment and bullying behaviors. This has triggered both industrial and research community in the last few years while there are several tries to identify an efficient model for on-line toxic comment prediction. However, these steps are still in their infancy and new approaches and frameworks are required. On parallel, the data explosion that appears constantly, makes the construction of new machine learning computational tools for managing this information, an imperative need. Thankfully advances in hardware, cloud computing and big data management allow the development of Deep Learning approaches appearing very promising performance so far. For text classification in particular the use of Convolutional Neural Networks (CNN) have recently been proposed approaching text analytics in a modern manner emphasizing in the structure of words in a document. In this work, we employ this approach to discover toxic comments in a large pool of documents provided by a current Kaggle's competition regarding Wikipedia's talk page edits. To justify this decision we choose to compare CNNs against the traditional bag-of-words approach for text analysis combined with a selection of algorithms proven to be very effective in text classification. The reported results provide enough evidence that CNN enhance toxic comment classification reinforcing research interest towards this direction.

Access Paper or Ask Questions

An Amharic News Text classification Dataset

Mar 10, 2021
Israel Abebe Azime, Nebil Mohammed

In NLP, text classification is one of the primary problems we try to solve and its uses in language analyses are indisputable. The lack of labeled training data made it harder to do these tasks in low resource languages like Amharic. The task of collecting, labeling, annotating, and making valuable this kind of data will encourage junior researchers, schools, and machine learning practitioners to implement existing classification models in their language. In this short paper, we aim to introduce the Amharic text classification dataset that consists of more than 50k news articles that were categorized into 6 classes. This dataset is made available with easy baseline performances to encourage studies and better performance experiments.

Access Paper or Ask Questions

Learning to Share by Masking the Non-shared for Multi-domain Sentiment Classification

Apr 17, 2021
Jianhua Yuan, Yanyan Zhao, Bing Qin, Ting Liu

Multi-domain sentiment classification deals with the scenario where labeled data exists for multiple domains but insufficient for training effective sentiment classifiers that work across domains. Thus, fully exploiting sentiment knowledge shared across domains is crucial for real world applications. While many existing works try to extract domain-invariant features in high-dimensional space, such models fail to explicitly distinguish between shared and private features at text-level, which to some extent lacks interpretablity. Based on the assumption that removing domain-related tokens from texts would help improve their domain-invariance, we instead first transform original sentences to be domain-agnostic. To this end, we propose the BertMasker network which explicitly masks domain-related words from texts, learns domain-invariant sentiment features from these domain-agnostic texts, and uses those masked words to form domain-aware sentence representations. Empirical experiments on a well-adopted multiple domain sentiment classification dataset demonstrate the effectiveness of our proposed model on both multi-domain sentiment classification and cross-domain settings, by increasing the accuracy by 0.94% and 1.8% respectively. Further analysis on masking proves that removing those domain-related and sentiment irrelevant tokens decreases texts' domain distinction, resulting in the performance degradation of a BERT-based domain classifier by over 12%.

* 11 pages 
Access Paper or Ask Questions

Do Convolutional Networks need to be Deep for Text Classification ?

Jul 13, 2017
Hoa T. Le, Christophe Cerisara, Alexandre Denis

We study in this work the importance of depth in convolutional models for text classification, either when character or word inputs are considered. We show on 5 standard text classification and sentiment analysis tasks that deep models indeed give better performances than shallow networks when the text input is represented as a sequence of characters. However, a simple shallow-and-wide network outperforms deep models such as DenseNet with word inputs. Our shallow word model further establishes new state-of-the-art performances on two datasets: Yelp Binary (95.9\%) and Yelp Full (64.9\%).

Access Paper or Ask Questions

Classification, Slippage, Failure and Discovery

Apr 08, 2021
Marc Böhlen

This text argues for the potential of machine learning infused classification systems as vectors for a technically-engaged and constructive technology critique. The text describes this potential with several experiments in image data creation and neural network based classification. The text considers varying aspects of slippage in classification and considers the potential for discovery - as opposed to disaster - stemming from machine learning systems when they fail to perform as anticipated.

* 9th Conference on Computation, Communication, Aesthetics & X 2021 
Access Paper or Ask Questions

Rational Kernels for Arabic Stemming and Text Classification

Feb 26, 2015
Attia Nehar, Djelloul Ziadi, Hadda Cherroun

In this paper, we address the problems of Arabic Text Classification and stemming using Transducers and Rational Kernels. We introduce a new stemming technique based on the use of Arabic patterns (Pattern Based Stemmer). Patterns are modelled using transducers and stemming is done without depending on any dictionary. Using transducers for stemming, documents are transformed into finite state transducers. This document representation allows us to use and explore rational kernels as a framework for Arabic Text Classification. Stemming experiments are conducted on three word collections and classification experiments are done on the Saudi Press Agency dataset. Results show that our approach, when compared with other approaches, is promising specially in terms of Accuracy, Recall and F1.

* 12 pages 
Access Paper or Ask Questions

Mimicking Human Process: Text Representation via Latent Semantic Clustering for Classification

Jun 18, 2019
Xiaoye Tan, Rui Yan, Chongyang Tao, Mingrui Wu

Considering that words with different characteristic in the text have different importance for classification, grouping them together separately can strengthen the semantic expression of each part. Thus we propose a new text representation scheme by clustering words according to their latent semantics and composing them together to get a set of cluster vectors, which are then concatenated as the final text representation. Evaluation on five classification benchmarks proves the effectiveness of our method. We further conduct visualization analysis showing statistical clustering results and verifying the validity of our motivation.

* 6 pages, 5 figures, 2nd Workshop on Humanizing AI (HAI) at IJCAI'19 
Access Paper or Ask Questions

A Text Classification Application: Poet Detection from Poetry

Oct 24, 2018
Durmus Ozkan Sahin, Oguz Emre Kural, Erdal Kilic, Armagan Karabina

With the widespread use of the internet, the size of the text data increases day by day. Poems can be given as an example of the growing text. In this study, we aim to classify poetry according to poet. Firstly, data set consisting of three different poetry of poets written in English have been constructed. Then, text categorization techniques are implemented on it. Chi-Square technique are used for feature selection. In addition, five different classification algorithms are tried. These algorithms are Sequential minimal optimization, Naive Bayes, C4.5 decision tree, Random Forest and k-nearest neighbors. Although each classifier showed very different results, over the 70% classification success rate was taken by sequential minimal optimization technique.

Access Paper or Ask Questions

Handwriting Classification for the Analysis of Art-Historical Documents

Nov 04, 2020
Christian Bartz, Hendrik Rätz, Christoph Meinel

Digitized archives contain and preserve the knowledge of generations of scholars in millions of documents. The size of these archives calls for automatic analysis since a manual analysis by specialists is often too expensive. In this paper, we focus on the analysis of handwriting in scanned documents from the art-historic archive of the WPI. Since the archive consists of documents written in several languages and lacks annotated training data for the creation of recognition models, we propose the task of handwriting classification as a new step for a handwriting OCR pipeline. We propose a handwriting classification model that labels extracted text fragments, eg, numbers, dates, or words, based on their visual structure. Such a classification supports historians by highlighting documents that contain a specific class of text without the need to read the entire content. To this end, we develop and compare several deep learning-based models for text classification. In extensive experiments, we show the advantages and disadvantages of our proposed approach and discuss possible usage scenarios on a real-world dataset.

* Code available at 
Access Paper or Ask Questions