Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Mapping Images to Sentiment Adjective Noun Pairs with Factorized Neural Nets

Nov 21, 2015
Takuya Narihira, Damian Borth, Stella X. Yu, Karl Ni, Trevor Darrell

We consider the visual sentiment task of mapping an image to an adjective noun pair (ANP) such as "cute baby". To capture the two-factor structure of our ANP semantics as well as to overcome annotation noise and ambiguity, we propose a novel factorized CNN model which learns separate representations for adjectives and nouns but optimizes the classification performance over their product. Our experiments on the publicly available SentiBank dataset show that our model significantly outperforms not only independent ANP classifiers on unseen ANPs and on retrieving images of novel ANPs, but also image captioning models which capture word semantics from co-occurrence of natural text; the latter turn out to be surprisingly poor at capturing the sentiment evoked by pure visual experience. That is, our factorized ANP CNN not only trains better from noisy labels, generalizes better to new images, but can also expands the ANP vocabulary on its own.

  Access Paper or Ask Questions

Sentiment Analysis and Sarcasm Detection of Indian General Election Tweets

Jan 03, 2022
Arpit Khare, Amisha Gangwar, Sudhakar Singh, Shiv Prakash

Social Media usage has increased to an all-time high level in today's digital world. The majority of the population uses social media tools (like Twitter, Facebook, YouTube, etc.) to share their thoughts and experiences with the community. Analysing the sentiments and opinions of the common public is very important for both the government and the business people. This is the reason behind the activeness of many media agencies during the election time for performing various kinds of opinion polls. In this paper, we have worked towards analysing the sentiments of the people of India during the Lok Sabha election of 2019 using the Twitter data of that duration. We have built an automatic tweet analyser using the Transfer Learning technique to handle the unsupervised nature of this problem. We have used the Linear Support Vector Classifiers method in our Machine Learning model, also, the Term Frequency Inverse Document Frequency (TF-IDF) methodology for handling the textual data of tweets. Further, we have increased the capability of the model to address the sarcastic tweets posted by some of the users, which has not been yet considered by the researchers in this domain.

* 17 pages, 9 figures, ANTIC-2021 

  Access Paper or Ask Questions

Who Wins the Game of Thrones? How Sentiments Improve the Prediction of Candidate Choice

Feb 29, 2020
Chaehan So

This paper analyzes how candidate choice prediction improves by different psychological predictors. To investigate this question, it collected an original survey dataset featuring the popular TV series "Game of Thrones". The respondents answered which character they anticipated to win in the final episode of the series, and explained their choice of the final candidate in free text from which sentiments were extracted. These sentiments were compared to feature sets derived from candidate likeability and candidate personality ratings. In our benchmarking of 10-fold cross-validation in 100 repetitions, all feature sets except the likeability ratings yielded a 10-11% improvement in accuracy on the holdout set over the base model. Treating the class imbalance with synthetic minority oversampling (SMOTE) increased holdout set performance by 20-34% but surprisingly not testing set performance. Taken together, our study provides a quantified estimation of the additional predictive value of psychological predictors. Likeability ratings were clearly outperformed by the feature sets based on personality, emotional valence, and basic emotions.

* To be published in IEEE conference proceedings: International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020 

  Access Paper or Ask Questions

PhonSenticNet: A Cognitive Approach to Microtext Normalization for Concept-Level Sentiment Analysis

Apr 24, 2019
Ranjan Satapathy, Aalind Singh, Erik Cambria

With the current upsurge in the usage of social media platforms, the trend of using short text (microtext) in place of standard words has seen a significant rise. The usage of microtext poses a considerable performance issue in concept-level sentiment analysis, since models are trained on standard words. This paper discusses the impact of coupling sub-symbolic (phonetics) with symbolic (machine learning) Artificial Intelligence to transform the out-of-vocabulary concepts into their standard in-vocabulary form. The phonetic distance is calculated using the Sorensen similarity algorithm. The phonetically similar invocabulary concepts thus obtained are then used to compute the correct polarity value, which was previously being miscalculated because of the presence of microtext. Our proposed framework increases the accuracy of polarity detection by 6% as compared to the earlier model. This also validates the fact that microtext normalization is a necessary pre-requisite for the sentiment analysis task.

* This paper is submitted to INTERSPEECH2019 

  Access Paper or Ask Questions

Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm

Oct 07, 2017
Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, Sune Lehmann

NLP tasks are often limited by scarcity of manually annotated data. In social media sentiment analysis and related tasks, researchers have therefore used binarized emoticons and specific hashtags as forms of distant supervision. Our paper shows that by extending the distant supervision to a more diverse set of noisy labels, the models can learn richer representations. Through emoji prediction on a dataset of 1246 million tweets containing one of 64 common emojis we obtain state-of-the-art performance on 8 benchmark datasets within sentiment, emotion and sarcasm detection using a single pretrained model. Our analyses confirm that the diversity of our emotional labels yield a performance improvement over previous distant supervision approaches.

* Accepted at EMNLP 2017. Please include EMNLP in any citations. Minor changes from the EMNLP camera-ready version. 9 pages + references and supplementary material 

  Access Paper or Ask Questions

Language Representation Models for Fine-Grained Sentiment Classification

May 27, 2020
Brian Cheang, Bailey Wei, David Kogan, Howey Qiu, Masud Ahmed

Sentiment classification is a quickly advancing field of study with applications in almost any field. While various models and datasets have shown high accuracy inthe task of binary classification, the task of fine-grained sentiment classification is still an area with room for significant improvement. Analyzing the SST-5 dataset,previous work by Munikar et al. (2019) showed that the embedding tool BERT allowed a simple model to achieve state-of-the-art accuracy. Since that paper, several BERT alternatives have been published, with three primary ones being AlBERT (Lan et al., 2019), DistilBERT (Sanh et al. 2019), and RoBERTa (Liu etal. 2019). While these models report some improvement over BERT on the popular benchmarks GLUE, SQuAD, and RACE, they have not been applied to the fine-grained classification task. In this paper, we examine whether the improvements hold true when applied to a novel task, by replicating the BERT model from Munikar et al., and swapping the embedding layer to the alternative models. Over the experiments, we found that AlBERT suffers significantly more accuracy loss than reported on other tasks, DistilBERT has accuracy loss similar to their reported loss on other tasks while being the fastest model to train, and RoBERTa reaches anew state-of-the-art accuracy for prediction on the SST-5 root level (60.2%).

  Access Paper or Ask Questions

Sentiment Analysis of Code-Mixed Social Media Text (Hinglish)

Feb 24, 2021
Gaurav Singh

This paper discusses the results obtained for different techniques applied for performing the sentiment analysis of social media (Twitter) code-mixed text written in Hinglish. The various stages involved in performing the sentiment analysis were data consolidation, data cleaning, data transformation and modelling. Various data cleaning techniques were applied, data was cleaned in five iterations and the results of experiments conducted were noted after each iteration. Data was transformed using count vectorizer, one hot vectorizer, tf-idf vectorizer, doc2vec, word2vec and fasttext embeddings. The models were created using various machine learning algorithms such as SVM, KNN, Decision Trees, Random Forests, Naive Bayes, Logistic Regression, and ensemble voting classifiers. The data was obtained from a task on Codalab competition website which was listed as Task:9 on the Semeval-2020 competition website. The models created were evaluated using the F1-score (macro). The best F1-score of 69.07 was achieved using ensemble voting classifier.

* 17 pages, 12 figures, 12 tables 

  Access Paper or Ask Questions

Supervised Term Weighting Metrics for Sentiment Analysis in Short Text

Oct 10, 2016
Hussam Hamdan, Patrice Bellot, Frederic Bechet

Term weighting metrics assign weights to terms in order to discriminate the important terms from the less crucial ones. Due to this characteristic, these metrics have attracted growing attention in text classification and recently in sentiment analysis. Using the weights given by such metrics could lead to more accurate document representation which may improve the performance of the classification. While previous studies have focused on proposing or comparing different weighting metrics at two-classes document level sentiment analysis, this study propose to analyse the results given by each metric in order to find out the characteristics of good and bad weighting metrics. Therefore we present an empirical study of fifteen global supervised weighting metrics with four local weighting metrics adopted from information retrieval, we also give an analysis to understand the behavior of each metric by observing and analysing how each metric distributes the terms and deduce some characteristics which may distinguish the good and bad metrics. The evaluation has been done using Support Vector Machine on three different datasets: Twitter, restaurant and laptop reviews.

  Access Paper or Ask Questions

Tag-assisted Multimodal Sentiment Analysis under Uncertain Missing Modalities

Apr 28, 2022
Jiandian Zeng, Tianyi Liu, Jiantao Zhou

Multimodal sentiment analysis has been studied under the assumption that all modalities are available. However, such a strong assumption does not always hold in practice, and most of multimodal fusion models may fail when partial modalities are missing. Several works have addressed the missing modality problem; but most of them only considered the single modality missing case, and ignored the practically more general cases of multiple modalities missing. To this end, in this paper, we propose a Tag-Assisted Transformer Encoder (TATE) network to handle the problem of missing uncertain modalities. Specifically, we design a tag encoding module to cover both the single modality and multiple modalities missing cases, so as to guide the network's attention to those missing modalities. Besides, we adopt a new space projection pattern to align common vectors. Then, a Transformer encoder-decoder network is utilized to learn the missing modality features. At last, the outputs of the Transformer encoder are used for the final sentiment classification. Extensive experiments are conducted on CMU-MOSI and IEMOCAP datasets, showing that our method can achieve significant improvements compared with several baselines.

* Accepted by SIGIR2022 

  Access Paper or Ask Questions

Classifying YouTube Comments Based on Sentiment and Type of Sentence

Oct 31, 2021
Rhitabrat Pokharel, Dixit Bhatta

As a YouTube channel grows, each video can potentially collect enormous amounts of comments that provide direct feedback from the viewers. These comments are a major means of understanding viewer expectations and improving channel engagement. However, the comments only represent a general collection of user opinions about the channel and the content. Many comments are poorly constructed, trivial, and have improper spellings and grammatical errors. As a result, it is a tedious job to identify the comments that best interest the content creators. In this paper, we extract and classify the raw comments into different categories based on both sentiment and sentence types that will help YouTubers find relevant comments for growing their viewership. Existing studies have focused either on sentiment analysis (positive and negative) or classification of sub-types within the same sentence types (e.g., types of questions) on a text corpus. These have limited application on non-traditional text corpus like YouTube comments. We address this challenge of text extraction and classification from YouTube comments using well-known statistical measures and machine learning models. We evaluate each combination of statistical measure and the machine learning model using cross validation and $F_1$ scores. The results show that our approach that incorporates conventional methods performs well on the classification task, validating its potential in assisting content creators increase viewer engagement on their channel.

* This paper was accepted at 2021 International Conference on Knowledge Discovery and Machine Learning (KDML 2021), but later withdrawn. The paper should be taken as a non peer-reviewed publication 

  Access Paper or Ask Questions