Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Twitter discussions and concerns about COVID-19 pandemic: Twitter data analysis using a machine learning approach

May 26, 2020
Jia Xue, Junxiang Chen, Ran Hu, Chen Chen, ChengDa Zheng, Tingshao Zhu

The objective of the study is to examine coronavirus disease (COVID-19) related discussions, concerns, and sentiments that emerged from tweets posted by Twitter users. We collected 22 million Twitter messages related to the COVID-19 pandemic using a list of 25 hashtags such as "coronavirus," "COVID-19," "quarantine" from March 1 to April 21 in 2020. We used a machine learning approach, Latent Dirichlet Allocation (LDA), to identify popular unigram, bigrams, salient topics and themes, and sentiments in the collected Tweets. Popular unigrams included "virus," "lockdown," and "quarantine." Popular bigrams included "COVID-19," "stay home," "corona virus," "social distancing," and "new cases." We identified 13 discussion topics and categorized them into different themes, such as "Measures to slow the spread of COVID-19," "Quarantine and shelter-in-place order in the U.S.," "COVID-19 in New York," "Virus misinformation and fake news," "A need for a vaccine to stop the spread," "Protest against the lockdown," and "Coronavirus new cases and deaths." The dominant sentiments for the spread of coronavirus were anticipation that measures that can be taken, followed by a mixed feeling of trust, anger, and fear for different topics. The public revealed a significant feeling of fear when they discussed the coronavirus new cases and deaths. The study concludes that Twitter continues to be an essential source for infodemiology study by tracking rapidly evolving public sentiment and measuring public interests and concerns. Already emerged pandemic fear, stigma, and mental health concerns may continue to influence public trust when there occurs a second wave of COVID-19 or a new surge of the imminent pandemic. Hearing and reacting to real concerns from the public can enhance trust between the healthcare systems and the public as well as prepare for a future public health emergency.

  Access Paper or Ask Questions

SentiQ: A Probabilistic Logic Approach to Enhance Sentiment Analysis Tool Quality

Aug 19, 2020
Wissam Maamar Kouadri, Salima Benbernou, Mourad Ouziri, Themis Palpanas, Iheb Ben Amor

The opinion expressed in various Web sites and social-media is an essential contributor to the decision making process of several organizations. Existing sentiment analysis tools aim to extract the polarity (i.e., positive, negative, neutral) from these opinionated contents. Despite the advance of the research in the field, sentiment analysis tools give \textit{inconsistent} polarities, which is harmful to business decisions. In this paper, we propose SentiQ, an unsupervised Markov logic Network-based approach that injects the semantic dimension in the tools through rules. It allows to detect and solve inconsistencies and then improves the overall accuracy of the tools. Preliminary experimental results demonstrate the usefulness of SentiQ.

* In Proceedings of the 9th KDD Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM 20). San Diego, CA, USA, 8 pages 

  Access Paper or Ask Questions

DuTrust: A Sentiment Analysis Dataset for Trustworthiness Evaluation

Sep 07, 2021
Lijie Wang, Hao Liu, Shuyuan Peng, Hongxuan Tang, Xinyan Xiao, Ying Chen, Hua Wu, Haifeng Wang

While deep learning models have greatly improved the performance of most artificial intelligence tasks, they are often criticized to be untrustworthy due to the black-box problem. Consequently, many works have been proposed to study the trustworthiness of deep learning. However, as most open datasets are designed for evaluating the accuracy of model outputs, there is still a lack of appropriate datasets for evaluating the inner workings of neural networks. The lack of datasets obviously hinders the development of trustworthiness research. Therefore, in order to systematically evaluate the factors for building trustworthy systems, we propose a novel and well-annotated sentiment analysis dataset to evaluate robustness and interpretability. To evaluate these factors, our dataset contains diverse annotations about the challenging distribution of instances, manual adversarial instances and sentiment explanations. Several evaluation metrics are further proposed for interpretability and robustness. Based on the dataset and metrics, we conduct comprehensive comparisons for the trustworthiness of three typical models, and also study the relations between accuracy, robustness and interpretability. We release this trustworthiness evaluation dataset at \url{https://github/xyz} and hope our work can facilitate the progress on building more trustworthy systems for real-world applications.

  Access Paper or Ask Questions

Fragmented and Valuable: Following Sentiment Changes in Food Tweets

Jun 09, 2021
Maija Kāle, Matīss Rikters

We analysed sentiment and frequencies related to smell, taste and temperature expressed by food tweets in the Latvian language. To get a better understanding of the role of smell, taste and temperature in the mental map of food associations, we looked at such categories as 'tasty' and 'healthy', which turned out to be mutually exclusive. By analysing the occurrence frequency of words associated with these categories, we discovered that food discourse overall was permeated by `tasty' while the category of 'healthy' was relatively small. Finally, we used the analysis of temporal dynamics to see if we can trace seasonality or other temporal aspects in smell, taste and temperature as reflected in food tweets. Understanding the composition of social media content with relation to smell, taste and temperature in food tweets allows us to develop our work further - on food culture/seasonality and its relation to temperature, on our limited capacity to express smell-related sentiments, and the lack of the paradigm of taste in discussing food healthiness.

* Published in Smell, Taste, and Temperature Interfaces CHI 2021 workshop 

  Access Paper or Ask Questions

Ensemble of Generative and Discriminative Techniques for Sentiment Analysis of Movie Reviews

May 27, 2015
Grégoire Mesnil, Tomas Mikolov, Marc'Aurelio Ranzato, Yoshua Bengio

Sentiment analysis is a common task in natural language processing that aims to detect polarity of a text document (typically a consumer review). In the simplest settings, we discriminate only between positive and negative sentiment, turning the task into a standard binary classification problem. We compare several ma- chine learning approaches to this problem, and combine them to achieve the best possible results. We show how to use for this task the standard generative lan- guage models, which are slightly complementary to the state of the art techniques. We achieve strong results on a well-known dataset of IMDB movie reviews. Our results are easily reproducible, as we publish also the code needed to repeat the experiments. This should simplify further advance of the state of the art, as other researchers can combine their techniques with ours with little effort.

  Access Paper or Ask Questions

Are the Multilingual Models Better? Improving Czech Sentiment with Transformers

Aug 24, 2021
Pavel Přibáň, Josef Steinberger

In this paper, we aim at improving Czech sentiment with transformer-based models and their multilingual versions. More concretely, we study the task of polarity detection for the Czech language on three sentiment polarity datasets. We fine-tune and perform experiments with five multilingual and three monolingual models. We compare the monolingual and multilingual models' performance, including comparison with the older approach based on recurrent neural networks. Furthermore, we test the multilingual models and their ability to transfer knowledge from English to Czech (and vice versa) with zero-shot cross-lingual classification. Our experiments show that the huge multilingual models can overcome the performance of the monolingual models. They are also able to detect polarity in another language without any training data, with performance not worse than 4.4 % compared to state-of-the-art monolingual trained models. Moreover, we achieved new state-of-the-art results on all three datasets.

* Accepted to RANLP 2021, github: 

  Access Paper or Ask Questions

L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset

Mar 21, 2021
Atharva Kulkarni, Meet Mandhane, Manali Likhitkar, Gayatri Kshirsagar, Raviraj Joshi

Sentiment analysis is one of the most fundamental tasks in Natural Language Processing. Popular languages like English, Arabic, Russian, Mandarin, and also Indian languages such as Hindi, Bengali, Tamil have seen a significant amount of work in this area. However, the Marathi language which is the third most popular language in India still lags behind due to the absence of proper datasets. In this paper, we present the first major publicly available Marathi Sentiment Analysis Dataset - L3CubeMahaSent. It is curated using tweets extracted from various Maharashtrian personalities' Twitter accounts. Our dataset consists of ~16,000 distinct tweets classified in three broad classes viz. positive, negative, and neutral. We also present the guidelines using which we annotated the tweets. Finally, we present the statistics of our dataset and baseline classification results using CNN, LSTM, ULMFiT, and BERT-based deep learning models.

* Accepted at [email protected] 2021 

  Access Paper or Ask Questions

Multilingual Twitter Sentiment Classification: The Role of Human Annotators

May 05, 2016
Igor Mozetic, Miha Grcar, Jasmina Smailovic

What are the limits of automated Twitter sentiment classification? We analyze a large set of manually labeled tweets in different languages, use them as training data, and construct automated classification models. It turns out that the quality of classification models depends much more on the quality and size of training data than on the type of the model trained. Experimental results indicate that there is no statistically significant difference between the performance of the top classification models. We quantify the quality of training data by applying various annotator agreement measures, and identify the weakest points of different datasets. We show that the model performance approaches the inter-annotator agreement when the size of the training set is sufficiently large. However, it is crucial to regularly monitor the self- and inter-annotator agreements since this improves the training datasets and consequently the model performance. Finally, we show that there is strong evidence that humans perceive the sentiment classes (negative, neutral, and positive) as ordered.

* PLoS ONE 11(5): e0155036, 2016 

  Access Paper or Ask Questions

FinBERT: Financial Sentiment Analysis with Pre-trained Language Models

Aug 27, 2019
Dogu Araci

Financial sentiment analysis is a challenging task due to the specialized language and lack of labeled data in that domain. General-purpose models are not effective enough because of the specialized language used in a financial context. We hypothesize that pre-trained language models can help with this problem because they require fewer labeled examples and they can be further trained on domain-specific corpora. We introduce FinBERT, a language model based on BERT, to tackle NLP tasks in the financial domain. Our results show improvement in every measured metric on current state-of-the-art results for two financial sentiment analysis datasets. We find that even with a smaller training set and fine-tuning only a part of the model, FinBERT outperforms state-of-the-art machine learning methods.

* This thesis is submitted in partial fulfillment for the degree of Master of Science in Information Studies: Data Science, University of Amsterdam. June 25, 2019 

  Access Paper or Ask Questions

Word Embeddings for Sentiment Analysis: A Comprehensive Empirical Survey

Feb 02, 2019
Erion Çano, Maurizio Morisio

This work investigates the role of factors like training method, training corpus size and thematic relevance of texts in the performance of word embedding features on sentiment analysis of tweets, song lyrics, movie reviews and item reviews. We also explore specific training or post-processing methods that can be used to enhance the performance of word embeddings in certain tasks or domains. Our empirical observations indicate that models trained with multithematic texts that are large and rich in vocabulary are the best in answering syntactic and semantic word analogy questions. We further observe that influence of thematic relevance is stronger on movie and phone reviews, but weaker on tweets and lyrics. These two later domains are more sensitive to corpus size and training method, with Glove outperforming Word2vec. "Injecting" extra intelligence from lexicons or generating sentiment specific word embeddings are two prominent alternatives for increasing performance of word embedding features.

* 20 pages, 16 figures, 15 tables 

  Access Paper or Ask Questions