Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Transformation Networks for Target-Oriented Sentiment Classification

May 03, 2018
Xin Li, Lidong Bing, Wai Lam, Bei Shi

Target-oriented sentiment classification aims at classifying sentiment polarities over individual opinion targets in a sentence. RNN with attention seems a good fit for the characteristics of this task, and indeed it achieves the state-of-the-art performance. After re-examining the drawbacks of attention mechanism and the obstacles that block CNN to perform well in this classification task, we propose a new model to overcome these issues. Instead of attention, our model employs a CNN layer to extract salient features from the transformed word representations originated from a bi-directional RNN layer. Between the two layers, we propose a component to generate target-specific representations of words in the sentence, meanwhile incorporate a mechanism for preserving the original contextual information from the RNN layer. Experiments show that our model achieves a new state-of-the-art performance on a few benchmarks.

* ACL 2018 

  Access Paper or Ask Questions

Using Psuedolabels for training Sentiment Classifiers makes the model generalize better across datasets

Oct 05, 2021
Natesh Reddy, Muktabh Mayank Srivastava

The problem statement addressed in this work is : For a public sentiment classification API, how can we set up a classifier that works well on different types of data, having limited ability to annotate data from across domains. We show that given a large amount of unannotated data from across different domains and pseudolabels on this dataset generated by a classifier trained on a small annotated dataset from one domain, we can train a sentiment classifier that generalizes better across different datasets.

  Access Paper or Ask Questions

Calling to CNN-LSTM for Rumor Detection: A Deep Multi-channel Model for Message Veracity Classification in Microblogs

Oct 11, 2021
Abderrazek Azri, C茅cile Favre, Nouria Harbi, J茅r么me Darmont, Camille No没s

Reputed by their low-cost, easy-access, real-time and valuable information, social media also wildly spread unverified or fake news. Rumors can notably cause severe damage on individuals and the society. Therefore, rumor detection on social media has recently attracted tremendous attention. Most rumor detection approaches focus on rumor feature analysis and social features, i.e., metadata in social media. Unfortunately, these features are data-specific and may not always be available, e.g., when the rumor has just popped up and not yet propagated. In contrast, post contents (including images or videos) play an important role and can indicate the diffusion purpose of a rumor. Furthermore, rumor classification is also closely related to opinion mining and sentiment analysis. Yet, to the best of our knowledge, exploiting images and sentiments is little investigated.Considering the available multimodal features from microblogs, notably, we propose in this paper an end-to-end model called deepMONITOR that is based on deep neural networks and allows quite accurate automated rumor verification, by utilizing all three characteristics: post textual and image contents, as well as sentiment. deepMONITOR concatenates image features with the joint text and sentiment features to produce a reliable, fused classification. We conduct extensive experiments on two large-scale, real-world datasets. The results show that deepMONITOR achieves a higher accuracy than state-of-the-art methods.

* Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2021), Sep 2021, Bilbao, Spain. pp.497-513 

  Access Paper or Ask Questions

A Transformer-based joint-encoding for Emotion Recognition and Sentiment Analysis

Jun 29, 2020
Jean-Benoit Delbrouck, No茅 Tits, Mathilde Brousmiche, St茅phane Dupont

Understanding expressed sentiment and emotions are two crucial factors in human multimodal language. This paper describes a Transformer-based joint-encoding (TBJE) for the task of Emotion Recognition and Sentiment Analysis. In addition to use the Transformer architecture, our approach relies on a modular co-attention and a glimpse layer to jointly encode one or more modalities. The proposed solution has also been submitted to the ACL20: Second Grand-Challenge on Multimodal Language to be evaluated on the CMU-MOSEI dataset. The code to replicate the presented experiments is open-source:

* Winner of the ACL20: Second Grand-Challenge on Multimodal Language 

  Access Paper or Ask Questions

Exploiting Document Knowledge for Aspect-level Sentiment Classification

Jun 12, 2018
Ruidan He, Wee Sun Lee, Hwee Tou Ng, Daniel Dahlmeier

Attention-based long short-term memory (LSTM) networks have proven to be useful in aspect-level sentiment classification. However, due to the difficulties in annotating aspect-level data, existing public datasets for this task are all relatively small, which largely limits the effectiveness of those neural models. In this paper, we explore two approaches that transfer knowledge from document- level data, which is much less expensive to obtain, to improve the performance of aspect-level sentiment classification. We demonstrate the effectiveness of our approaches on 4 public datasets from SemEval 2014, 2015, and 2016, and we show that attention-based LSTM benefits from document-level knowledge in multiple ways.

* Accepted to ACL 2018 (short paper) 

  Access Paper or Ask Questions

Good Debt or Bad Debt: Detecting Semantic Orientations in Economic Texts

Jul 23, 2013
Pekka Malo, Ankur Sinha, Pyry Takala, Pekka Korhonen, Jyrki Wallenius

The use of robo-readers to analyze news texts is an emerging technology trend in computational finance. In recent research, a substantial effort has been invested to develop sophisticated financial polarity-lexicons that can be used to investigate how financial sentiments relate to future company performance. However, based on experience from other fields, where sentiment analysis is commonly applied, it is well-known that the overall semantic orientation of a sentence may differ from the prior polarity of individual words. The objective of this article is to investigate how semantic orientations can be better detected in financial and economic news by accommodating the overall phrase-structure information and domain-specific use of language. Our three main contributions are: (1) establishment of a human-annotated finance phrase-bank, which can be used as benchmark for training and evaluating alternative models; (2) presentation of a technique to enhance financial lexicons with attributes that help to identify expected direction of events that affect overall sentiment; (3) development of a linearized phrase-structure model for detecting contextual semantic orientations in financial and economic news texts. The relevance of the newly added lexicon features and the benefit of using the proposed learning-algorithm are demonstrated in a comparative study against previously used general sentiment models as well as the popular word frequency models used in recent financial studies. The proposed framework is parsimonious and avoids the explosion in feature-space caused by the use of conventional n-gram features.

* To be published in Journal of the American Society for Information Science and Technology 

  Access Paper or Ask Questions

Understanding Public Opinion on Using Hydroxychloroquine for COVID-19 Treatment via Social Media

Jan 01, 2022
Thuy T. Do, Du Nguyen, Anh Le, Anh Nguyen, Dong Nguyen, Nga Hoang, Uyen Le, Tuan Tran

Hydroxychloroquine (HCQ) is used to prevent or treat malaria caused by mosquito bites. Recently, the drug has been suggested to treat COVID-19, but that has not been supported by scientific evidence. The information regarding the drug efficacy has flooded social networks, posting potential threats to the community by perverting their perceptions of the drug efficacy. This paper studies the reactions of social network users on the recommendation of using HCQ for COVID-19 treatment by analyzing the reaction patterns and sentiment of the tweets. We collected 164,016 tweets from February to December 2020 and used a text mining approach to identify social reaction patterns and opinion change over time. Our descriptive analysis identified an irregularity of the users' reaction patterns associated tightly with the social and news feeds on the development of HCQ and COVID-19 treatment. The study linked the tweets and Google search frequencies to reveal the viewpoints of local communities on the use of HCQ for COVID-19 treatment across different states. Further, our tweet sentiment analysis reveals that public opinion changed significantly over time regarding the recommendation of using HCQ for COVID-19 treatment. The data showed that high support in the early dates but it significantly declined in October. Finally, using the manual classification of 4,850 tweets by humans as our benchmark, our sentiment analysis showed that the Google Cloud Natural Language algorithm outperformed the Valence Aware Dictionary and sEntiment Reasoner in classifying tweets, especially in the sarcastic tweet group.

* This paper will be presented at HEALTHINF 2022 - Conference 

  Access Paper or Ask Questions

Semantic Properties of Customer Sentiment in Tweets

Mar 24, 2016
Eun Hee Ko, Diego Klabjan

An increasing number of people are using online social networking services (SNSs), and a significant amount of information related to experiences in consumption is shared in this new media form. Text mining is an emerging technique for mining useful information from the web. We aim at discovering in particular tweets semantic patterns in consumers' discussions on social media. Specifically, the purposes of this study are twofold: 1) finding similarity and dissimilarity between two sets of textual documents that include consumers' sentiment polarities, two forms of positive vs. negative opinions and 2) driving actual content from the textual data that has a semantic trend. The considered tweets include consumers opinions on US retail companies (e.g., Amazon, Walmart). Cosine similarity and K-means clustering methods are used to achieve the former goal, and Latent Dirichlet Allocation (LDA), a popular topic modeling algorithm, is used for the latter purpose. This is the first study which discover semantic properties of textual data in consumption context beyond sentiment analysis. In addition to major findings, we apply LDA (Latent Dirichlet Allocations) to the same data and drew latent topics that represent consumers' positive opinions and negative opinions on social media.

* The 28th IEEE International Conference on Advanced Information Networking and Applications. Victoria, Canada, 2014 

  Access Paper or Ask Questions

On the Effect of Word Order on Cross-lingual Sentiment Analysis

Jun 13, 2019
脌lex R. Atrio, Toni Badia, Jeremy Barnes

Current state-of-the-art models for sentiment analysis make use of word order either explicitly by pre-training on a language modeling objective or implicitly by using recurrent neural networks (RNNs) or convolutional networks (CNNs). This is a problem for cross-lingual models that use bilingual embeddings as features, as the difference in word order between source and target languages is not resolved. In this work, we explore reordering as a pre-processing step for sentence-level cross-lingual sentiment classification with two language combinations (English-Spanish, English-Catalan). We find that while reordering helps both models, CNNS are more sensitive to local reorderings, while global reordering benefits RNNs.

* Accepted to SEPLN 2019 

  Access Paper or Ask Questions

Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence

Mar 22, 2019
Chi Sun, Luyao Huang, Xipeng Qiu

Aspect-based sentiment analysis (ABSA), which aims to identify fine-grained opinion polarity towards a specific aspect, is a challenging subtask of sentiment analysis (SA). In this paper, we construct an auxiliary sentence from the aspect and convert ABSA to a sentence-pair classification task, such as question answering (QA) and natural language inference (NLI). We fine-tune the pre-trained model from BERT and achieve new state-of-the-art results on SentiHood and SemEval-2014 Task 4 datasets.

* Accepted to NAACL 2019 

  Access Paper or Ask Questions