Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Towards Autoencoding Variational Inference for Aspect-based Opinion Summary

Feb 16, 2019
Tai Hoang, Huy Le, Tho Quan

Aspect-based Opinion Summary (AOS), consisting of aspect discovery and sentiment classification steps, has recently been emerging as one of the most crucial data mining tasks in e-commerce systems. Along this direction, the LDA-based model is considered as a notably suitable approach, since this model offers both topic modeling and sentiment classification. However, unlike traditional topic modeling, in the context of aspect discovery it is often required some initial seed words, whose prior knowledge is not easy to be incorporated into LDA models. Moreover, LDA approaches rely on sampling methods, which need to load the whole corpus into memory, making them hardly scalable. In this research, we study an alternative approach for AOS problem, based on Autoencoding Variational Inference (AVI). Firstly, we introduce the Autoencoding Variational Inference for Aspect Discovery (AVIAD) model, which extends the previous work of Autoencoding Variational Inference for Topic Models (AVITM) to embed prior knowledge of seed words. This work includes enhancement of the previous AVI architecture and also modification of the loss function. Ultimately, we present the Autoencoding Variational Inference for Joint Sentiment/Topic (AVIJST) model. In this model, we substantially extend the AVI model to support the JST model, which performs topic modeling for corresponding sentiment. The experimental results show that our proposed models enjoy higher topic coherent, faster convergence time and better accuracy on sentiment classification, as compared to their LDA-based counterparts.

* 20 pages, 11 figures, under review at The Computer Journal 

  Access Paper or Ask Questions

Affect Control Processes: Intelligent Affective Interaction using a Partially Observable Markov Decision Process

Apr 03, 2014
Jesse Hoey, Tobias Schroeder, Areej Alhothali

This paper describes a novel method for building affectively intelligent human-interactive agents. The method is based on a key sociological insight that has been developed and extensively verified over the last twenty years, but has yet to make an impact in artificial intelligence. The insight is that resource bounded humans will, by default, act to maintain affective consistency. Humans have culturally shared fundamental affective sentiments about identities, behaviours, and objects, and they act so that the transient affective sentiments created during interactions confirm the fundamental sentiments. Humans seek and create situations that confirm or are consistent with, and avoid and supress situations that disconfirm or are inconsistent with, their culturally shared affective sentiments. This "affect control principle" has been shown to be a powerful predictor of human behaviour. In this paper, we present a probabilistic and decision-theoretic generalisation of this principle, and we demonstrate how it can be leveraged to build affectively intelligent artificial agents. The new model, called BayesAct, can maintain multiple hypotheses about sentiments simultaneously as a probability distribution, and can make use of an explicit utility function to make value-directed action choices. This allows the model to generate affectively intelligent interactions with people by learning about their identity, predicting their behaviours using the affect control principle, and taking actions that are simultaneously goal-directed and affect-sensitive. We demonstrate this generalisation with a set of simulations. We then show how our model can be used as an emotional "plug-in" for artificially intelligent systems that interact with humans in two different settings: an exam practice assistant (tutor) and an assistive device for persons with a cognitive disability.

  Access Paper or Ask Questions

Classification Benchmarks for Under-resourced Bengali Language based on Multichannel Convolutional-LSTM Network

Apr 19, 2020
Md. Rezaul Karim, Bharathi Raja Chakravarthi, John P. McCrae, Michael Cochez

Exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices but also enables people to express anti-social behaviour like online harassment, cyberbullying, and hate speech. Numerous works have been proposed to utilize these data for social and anti-social behaviours analysis, document characterization, and sentiment analysis by predicting the contexts mostly for highly resourced languages such as English. However, there are languages that are under-resources, e.g., South Asian languages like Bengali, Tamil, Assamese, Telugu that lack of computational resources for the NLP tasks. In this paper, we provide several classification benchmarks for Bengali, an under-resourced language. We prepared three datasets of expressing hate, commonly used topics, and opinions for hate speech detection, document classification, and sentiment analysis, respectively. We built the largest Bengali word embedding models to date based on 250 million articles, which we call BengFastText. We perform three different experiments, covering document classification, sentiment analysis, and hate speech detection. We incorporate word embeddings into a Multichannel Convolutional-LSTM (MConv-LSTM) network for predicting different types of hate speech, document classification, and sentiment analysis. Experiments demonstrate that BengFastText can capture the semantics of words from respective contexts correctly. Evaluations against several baseline embedding models, e.g., Word2Vec and GloVe yield up to 92.30%, 82.25%, and 90.45% F1-scores in case of document classification, sentiment analysis, and hate speech detection, respectively during 5-fold cross-validation tests.

* This paper is under review in the Journal of Natural Language Engineering 

  Access Paper or Ask Questions

News Sentiment Analysis

Jul 05, 2020
Antony Samuels, John Mcgonical

Modern technological era has reshaped traditional lifestyle in several domains. The medium of publishing news and events has become faster with the advancement of Information Technology. IT has also been flooded with immense amounts of data, which is being published every minute of every day, by millions of users, in the shape of comments, blogs, news sharing through blogs, social media micro-blogging websites and many more. Manual traversal of such huge data is a challenging job, thus, sophisticated methods are acquired to perform this task automatically and efficiently. News reports events that comprise of emotions - good, bad, neutral. Sentiment analysis is utilized to investigate human emotions present in textual information. This paper presents a lexicon-based approach for sentiment analysis of news articles. The experiments have been performed on BBC news data set, which expresses the applicability and validation of the adopted approach.

  Access Paper or Ask Questions

Zero-Shot Fine-Grained Style Transfer: Leveraging Distributed Continuous Style Representations to Transfer To Unseen Styles

Nov 10, 2019
Eric Michael Smith, Diana Gonzalez-Rico, Emily Dinan, Y-Lan Boureau

Text style transfer is usually performed using attributes that can take a handful of discrete values (e.g., positive to negative reviews). In this work, we introduce an architecture that can leverage pre-trained consistent continuous distributed style representations and use them to transfer to an attribute unseen during training, without requiring any re-tuning of the style transfer model. We demonstrate the method by training an architecture to transfer text conveying one sentiment to another sentiment, using a fine-grained set of over 20 sentiment labels rather than the binary positive/negative often used in style transfer. Our experiments show that this model can then rewrite text to match a target sentiment that was unseen during training.

  Access Paper or Ask Questions

Learning affective meanings that derives the social behavior using Bidirectional Encoder Representations from Transformers

Jan 31, 2022
Moeen Mostafavi, Michael D. Porter, Dawn T. Robinson

Predicting the outcome of a process requires modeling the system dynamic and observing the states. In the context of social behaviors, sentiments characterize the states of the system. Affect Control Theory (ACT) uses sentiments to manifest potential interaction. ACT is a generative theory of culture and behavior based on a three-dimensional sentiment lexicon. Traditionally, the sentiments are quantified using survey data which is fed into a regression model to explain social behavior. The lexicons used in the survey are limited due to prohibitive cost. This paper uses a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) model to develop a replacement for these surveys. This model achieves state-of-the-art accuracy in estimating affective meanings, expanding the affective lexicon, and allowing more behaviors to be explained.

* Working paper 

  Access Paper or Ask Questions

Lifelong Learning for Sentiment Classification

Jan 09, 2018
Zhiyuan Chen, Nianzu Ma, Bing Liu

This paper proposes a novel lifelong learning (LL) approach to sentiment classification. LL mimics the human continuous learning process, i.e., retaining the knowledge learned from past tasks and use it to help future learning. In this paper, we first discuss LL in general and then LL for sentiment classification in particular. The proposed LL approach adopts a Bayesian optimization framework based on stochastic gradient descent. Our experimental results show that the proposed method outperforms baseline methods significantly, which demonstrates that lifelong learning is a promising research direction.

* ACL 2015 

  Access Paper or Ask Questions

Two-dimensional Sentiment Analysis of text

Jun 08, 2014
Rahul Tejwani

Sentiment Analysis aims to get the underlying viewpoint of the text, which could be anything that holds a subjective opinion, such as an online review, Movie rating, Comments on Blog posts etc. This paper presents a novel approach that classify text in two-dimensional Emotional space, based on the sentiments of the author. The approach uses existing lexical resources to extract feature set, which is trained using Supervised Learning techniques.

* sentiment analysis, two-dimensional 

  Access Paper or Ask Questions