Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Twitter Sentiment Analysis using Distributed Word and Sentence Representation

Apr 01, 2019
Dwarampudi Mahidhar Reddy, Dr. N V Subba Reddy, Dr. N V Subba Reddy

An important part of the information gathering and data analysis is to find out what people think about, either a product or an entity. Twitter is an opinion rich social networking site. The posts or tweets from this data can be used for mining people's opinions. The recent surge of activity in this area can be attributed to the computational treatment of data, which made opinion extraction and sentiment analysis easier. This paper classifies tweets into positive and negative sentiments, but instead of using traditional methods or preprocessing text data here we use the distributed representations of words and sentences to classify the tweets. We use Long Short Term Memory (LSTM) Networks, Convolutional Neural Networks (CNNs) and Artificial Neural Networks. The first two are used on Distributed Representation of words while the latter is used on the distributed representation of sentences. This paper achieves accuracies as high as 81%. It also suggests the best and optimal ways for creating distributed representations of words for sentiment analysis, out of the available methods.

* 8 pages, 5 figures, 6 tables 

  Access Paper or Ask Questions

Sentiment-Aware Recommendation System for Healthcare using Social Media

Sep 18, 2019
Alan Aipe, Mukuntha Narayanan Sundararaman, Asif Ekbal

Over the last decade, health communities (known as forums) have evolved into platforms where more and more users share their medical experiences, thereby seeking guidance and interacting with people of the community. The shared content, though informal and unstructured in nature, contains valuable medical and/or health-related information and can be leveraged to produce structured suggestions to the common people. In this paper, at first we propose a stacked deep learning model for sentiment analysis from the medical forum data. The stacked model comprises of Convolutional Neural Network (CNN) followed by a Long Short Term Memory (LSTM) and then by another CNN. For a blog classified with positive sentiment, we retrieve the top-n similar posts. Thereafter, we develop a probabilistic model for suggesting the suitable treatments or procedures for a particular disease or health condition. We believe that integration of medical sentiment and suggestion would be beneficial to the users for finding the relevant contents regarding medications and medical conditions, without having to manually stroll through a large amount of unstructured contents.

* Accepted at the 20th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing 2019), April 7-13, 2019, La Rochelle, France; Springer LNCS Proceedings for CICLing 2019 

  Access Paper or Ask Questions

TwiSE at SemEval-2016 Task 4: Twitter Sentiment Classification

Jun 14, 2016
Georgios Balikas, Massih-Reza Amini

This paper describes the participation of the team "TwiSE" in the SemEval 2016 challenge. Specifically, we participated in Task 4, namely "Sentiment Analysis in Twitter" for which we implemented sentiment classification systems for subtasks A, B, C and D. Our approach consists of two steps. In the first step, we generate and validate diverse feature sets for twitter sentiment evaluation, inspired by the work of participants of previous editions of such challenges. In the second step, we focus on the optimization of the evaluation measures of the different subtasks. To this end, we examine different learning strategies by validating them on the data provided by the task organisers. For our final submissions we used an ensemble learning approach (stacked generalization) for Subtask A and single linear models for the rest of the subtasks. In the official leaderboard we were ranked 9/35, 8/19, 1/11 and 2/14 for subtasks A, B, C and D respectively.\footnote{We make the code available for research purposes at \url{https://github.com/balikasg/SemEval2016-Twitter\_Sentiment\_Evaluation}.}


  Access Paper or Ask Questions

Fuzzy Based Implicit Sentiment Analysis on Quantitative Sentences

Jan 03, 2017
Amir Hossein Yazdavar, Monireh Ebrahimi, Naomie Salim

With the rapid growth of social media on the web, emotional polarity computation has become a flourishing frontier in the text mining community. However, it is challenging to understand the latest trends and summarize the state or general opinions about products due to the big diversity and size of social media data and this creates the need of automated and real time opinion extraction and mining. On the other hand, the bulk of current research has been devoted to study the subjective sentences which contain opinion keywords and limited work has been reported for objective statements that imply sentiment. In this paper, fuzzy based knowledge engineering model has been developed for sentiment classification of special group of such sentences including the change or deviation from desired range or value. Drug reviews are the rich source of such statements. Therefore, in this research, some experiments were carried out on patient's reviews on several different cholesterol lowering drugs to determine their sentiment polarity. The main conclusion through this study is, in order to increase the accuracy level of existing drug opinion mining systems, objective sentences which imply opinion should be taken into account. Our experimental results demonstrate that our proposed model obtains over 72 percent F1 value.

* Text mining, Natural language processing, Sentiment analysis, Fuzzy set theory 

  Access Paper or Ask Questions

Phonetic-enriched Text Representation for Chinese Sentiment Analysis with Reinforcement Learning

Jan 23, 2019
Haiyun Peng, Yukun Ma, Soujanya Poria, Yang Li, Erik Cambria

The Chinese pronunciation system offers two characteristics that distinguish it from other languages: deep phonemic orthography and intonation variations. We are the first to argue that these two important properties can play a major role in Chinese sentiment analysis. Particularly, we propose two effective features to encode phonetic information. Next, we develop a Disambiguate Intonation for Sentiment Analysis (DISA) network using a reinforcement network. It functions as disambiguating intonations for each Chinese character (pinyin). Thus, a precise phonetic representation of Chinese is learned. Furthermore, we also fuse phonetic features with textual and visual features in order to mimic the way humans read and understand Chinese text. Experimental results on five different Chinese sentiment analysis datasets show that the inclusion of phonetic features significantly and consistently improves the performance of textual and visual representations and outshines the state-of-the-art Chinese character level representations.


  Access Paper or Ask Questions

A time-varying study of Chinese investor sentiment, stock market liquidity and volatility: Based on deep learning BERT model and TVP-VAR model

May 13, 2022
Chenrui Zhang, Xinyi Wu, Hailu Deng, Huiwei Zhang

Based on the commentary data of the Shenzhen Stock Index bar on the EastMoney website from January 1, 2018 to December 31, 2019. This paper extracts the embedded investor sentiment by using a deep learning BERT model and investigates the time-varying linkage between investment sentiment, stock market liquidity and volatility using a TVP-VAR model. The results show that the impact of investor sentiment on stock market liquidity and volatility is stronger. Although the inverse effect is relatively small, it is more pronounced with the state of the stock market. In all cases, the response is more pronounced in the short term than in the medium to long term, and the impact is asymmetric, with shocks stronger when the market is in a downward spiral.

* 25 pages, 7 figures, 8 tables, Funded by the National Student Innovation and Entrepreneurship Training Program (Project No. 202110561076) 

  Access Paper or Ask Questions

Can Sentiment Analysis Reveal Structure in a Plotless Novel?

Aug 31, 2019
Kathrine Elkins, Jon Chun

Modernist novels are thought to break with traditional plot structure. In this paper, we test this theory by applying Sentiment Analysis to one of the most famous modernist novels, To the Lighthouse by Virginia Woolf. We first assess Sentiment Analysis in light of the critique that it cannot adequately account for literary language: we use a unique statistical comparison to demonstrate that even simple lexical approaches to Sentiment Analysis are surprisingly effective. We then use the Syuzhet.R package to explore similarities and differences across modeling methods. This comparative approach, when paired with literary close reading, can offer interpretive clues. To our knowledge, we are the first to undertake a hybrid model that fully leverages the strengths of both computational analysis and close reading. This hybrid model raises new questions for the literary critic, such as how to interpret relative versus absolute emotional valence and how to take into account subjective identification. Our finding is that while To the Lighthouse does not replicate a plot centered around a traditional hero, it does reveal an underlying emotional structure distributed between characters - what we term a distributed heroine model. This finding is innovative in the field of modernist and narrative studies and demonstrates that a hybrid method can yield significant discoveries.

* Digital Humanities, Sentiment Analysis, Novel 

  Access Paper or Ask Questions

Exploiting Typed Syntactic Dependencies for Targeted Sentiment Classification Using Graph Attention Neural Network

Feb 22, 2020
Xuefeng Bai, Pengbo Liu, Yue Zhang

Targeted sentiment classification predicts the sentiment polarity on given target mentions in input texts. Dominant methods employ neural networks for encoding the input sentence and extracting relations between target mentions and their contexts. Recently, graph neural network has been investigated for integrating dependency syntax for the task, achieving the state-of-the-art results. However, existing methods do not consider dependency label information, which can be intuitively useful. To solve the problem, we investigate a novel relational graph attention network that integrates typed syntactic dependency information. Results on standard benchmarks show that our method can effectively leverage label information for improving targeted sentiment classification performances. Our final model significantly outperforms state-of-the-art syntax-based approaches.


  Access Paper or Ask Questions

Structured Self-Attention Weights Encode Semantics in Sentiment Analysis

Oct 10, 2020
Zhengxuan Wu, Thanh-Son Nguyen, Desmond C. Ong

Neural attention, especially the self-attention made popular by the Transformer, has become the workhorse of state-of-the-art natural language processing (NLP) models. Very recent work suggests that the self-attention in the Transformer encodes syntactic information; Here, we show that self-attention scores encode semantics by considering sentiment analysis tasks. In contrast to gradient-based feature attribution methods, we propose a simple and effective Layer-wise Attention Tracing (LAT) method to analyze structured attention weights. We apply our method to Transformer models trained on two tasks that have surface dissimilarities, but share common semantics---sentiment analysis of movie reviews and time-series valence prediction in life story narratives. Across both tasks, words with high aggregated attention weights were rich in emotional semantics, as quantitatively validated by an emotion lexicon labeled by human annotators. Our results show that structured attention weights encode rich semantics in sentiment analysis, and match human interpretations of semantics.

* 10 pages 

  Access Paper or Ask Questions

Sentiment Analysis for Sinhala Language using Deep Learning Techniques

Nov 14, 2020
Lahiru Senevirathne, Piyumal Demotte, Binod Karunanayake, Udyogi Munasinghe, Surangika Ranathunga

Due to the high impact of the fast-evolving fields of machine learning and deep learning, Natural Language Processing (NLP) tasks have further obtained comprehensive performances for highly resourced languages such as English and Chinese. However Sinhala, which is an under-resourced language with a rich morphology, has not experienced these advancements. For sentiment analysis, there exists only two previous research with deep learning approaches, which focused only on document-level sentiment analysis for the binary case. They experimented with only three types of deep learning models. In contrast, this paper presents a much comprehensive study on the use of standard sequence models such as RNN, LSTM, Bi-LSTM, as well as more recent state-of-the-art models such as hierarchical attention hybrid neural networks, and capsule networks. Classification is done at document-level but with more granularity by considering POSITIVE, NEGATIVE, NEUTRAL, and CONFLICT classes. A data set of 15059 Sinhala news comments, annotated with these four classes and a corpus consists of 9.48 million tokens are publicly released. This is the largest sentiment annotated data set for Sinhala so far.


  Access Paper or Ask Questions

<<
54
55
56
57
58
59
60
61
62
63
64
65
66
>>