Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Intelligent Trading Systems: A Sentiment-Aware Reinforcement Learning Approach

Nov 14, 2021
Francisco Caio Lima Paiva, Leonardo Kanashiro Felizardo, Reinaldo Augusto da Costa Bianchi, Anna Helena Reali Costa

The feasibility of making profitable trades on a single asset on stock exchanges based on patterns identification has long attracted researchers. Reinforcement Learning (RL) and Natural Language Processing have gained notoriety in these single-asset trading tasks, but only a few works have explored their combination. Moreover, some issues are still not addressed, such as extracting market sentiment momentum through the explicit capture of sentiment features that reflect the market condition over time and assessing the consistency and stability of RL results in different situations. Filling this gap, we propose the Sentiment-Aware RL (SentARL) intelligent trading system that improves profit stability by leveraging market mood through an adaptive amount of past sentiment features drawn from textual news. We evaluated SentARL across twenty assets, two transaction costs, and five different periods and initializations to show its consistent effectiveness against baselines. Subsequently, this thorough assessment allowed us to identify the boundary between news coverage and market sentiment regarding the correlation of price-time series above which SentARL's effectiveness is outstanding.

* 9 pages, 5 figures, To appear in the Proceedings of the 2nd ACM International Conference on AI in Finance (ICAIF'21), November 3-5, 2021, Virtual Event, USA 

  Access Paper or Ask Questions

Machine Learning Sentiment Prediction based on Hybrid Document Representation

Nov 29, 2015
Panagiotis Stalidis, Maria Giatsoglou, Konstantinos Diamantaras, George Sarigiannidis, Konstantinos Ch. Chatzisavvas

Automated sentiment analysis and opinion mining is a complex process concerning the extraction of useful subjective information from text. The explosion of user generated content on the Web, especially the fact that millions of users, on a daily basis, express their opinions on products and services to blogs, wikis, social networks, message boards, etc., render the reliable, automated export of sentiments and opinions from unstructured text crucial for several commercial applications. In this paper, we present a novel hybrid vectorization approach for textual resources that combines a weighted variant of the popular Word2Vec representation (based on Term Frequency-Inverse Document Frequency) representation and with a Bag- of-Words representation and a vector of lexicon-based sentiment values. The proposed text representation approach is assessed through the application of several machine learning classification algorithms on a dataset that is used extensively in literature for sentiment detection. The classification accuracy derived through the proposed hybrid vectorization approach is higher than when its individual components are used for text represenation, and comparable with state-of-the-art sentiment detection methodologies.


  Access Paper or Ask Questions

Fine-grained Sentiment Controlled Text Generation

Jun 17, 2020
Bidisha Samanta, Mohit Agarwal, Niloy Ganguly

Controlled text generation techniques aim to regulate specific attributes (e.g. sentiment) while preserving the attribute independent content. The state-of-the-art approaches model the specified attribute as a structured or discrete representation while making the content representation independent of it to achieve a better control. However, disentangling the text representation into separate latent spaces overlooks complex dependencies between content and attribute, leading to generation of poorly constructed and not so meaningful sentences. Moreover, such an approach fails to provide a finer control on the degree of attribute change. To address these problems of controlled text generation, in this paper, we propose DE-VAE, a hierarchical framework which captures both information enriched entangled representation and attribute specific disentangled representation in different hierarchies. DE-VAE achieves better control of sentiment as an attribute while preserving the content by learning a suitable lossless transformation network from the disentangled sentiment space to the desired entangled representation. Through feature supervision on a single dimension of the disentangled representation, DE-VAE maps the variation of sentiment to a continuous space which helps in smoothly regulating sentiment from positive to negative and vice versa. Detailed experiments on three publicly available review datasets show the superiority of DE-VAE over recent state-of-the-art approaches.


  Access Paper or Ask Questions

SentiHood: Targeted Aspect Based Sentiment Analysis Dataset for Urban Neighbourhoods

Oct 12, 2016
Marzieh Saeidi, Guillaume Bouchard, Maria Liakata, Sebastian Riedel

In this paper, we introduce the task of targeted aspect-based sentiment analysis. The goal is to extract fine-grained information with respect to entities mentioned in user comments. This work extends both aspect-based sentiment analysis that assumes a single entity per document and targeted sentiment analysis that assumes a single sentiment towards a target entity. In particular, we identify the sentiment towards each aspect of one or more entities. As a testbed for this task, we introduce the SentiHood dataset, extracted from a question answering (QA) platform where urban neighbourhoods are discussed by users. In this context units of text often mention several aspects of one or more neighbourhoods. This is the first time that a generic social media platform in this case a QA platform, is used for fine-grained opinion mining. Text coming from QA platforms is far less constrained compared to text from review specific platforms which current datasets are based on. We develop several strong baselines, relying on logistic regression and state-of-the-art recurrent neural networks.

* Accepted at COLING 2016 

  Access Paper or Ask Questions

MOSI: Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis in Online Opinion Videos

Aug 12, 2016
Amir Zadeh, Rowan Zellers, Eli Pincus, Louis-Philippe Morency

People are sharing their opinions, stories and reviews through online video sharing websites every day. Studying sentiment and subjectivity in these opinion videos is experiencing a growing attention from academia and industry. While sentiment analysis has been successful for text, it is an understudied research question for videos and multimedia content. The biggest setbacks for studies in this direction are lack of a proper dataset, methodology, baselines and statistical analysis of how information from different modality sources relate to each other. This paper introduces to the scientific community the first opinion-level annotated corpus of sentiment and subjectivity analysis in online videos called Multimodal Opinion-level Sentiment Intensity dataset (MOSI). The dataset is rigorously annotated with labels for subjectivity, sentiment intensity, per-frame and per-opinion annotated visual features, and per-milliseconds annotated audio features. Furthermore, we present baselines for future studies in this direction as well as a new multimodal fusion approach that jointly models spoken words and visual gestures.

* IEEE Intelligent Systems 31.6 (2016): 82-88 
* Accepted as Journal Publication in IEEE Intelligent Systems 

  Access Paper or Ask Questions

Effect of Word Embedding Variable Parameters on Arabic Sentiment Analysis Performance

Jan 08, 2021
Anwar Alnawas, Nursal ARICI

Social media such as Twitter, Facebook, etc. has led to a generated growing number of comments that contains users opinions. Sentiment analysis research deals with these comments to extract opinions which are positive or negative. Arabic language is a rich morphological language; thus, classical techniques of English sentiment analysis cannot be used for Arabic. Word embedding technique can be considered as one of successful methods to gaping the morphological problem of Arabic. Many works have been done for Arabic sentiment analysis based on word embedding, but there is no study focused on variable parameters. This study will discuss three parameters (Window size, Dimension of vector and Negative Sample) for Arabic sentiment analysis using DBOW and DMPV architectures. A large corpus of previous works generated to learn word representations and extract features. Four binary classifiers (Logistic Regression, Decision Tree, Support Vector Machine and Naive Bayes) are used to detect sentiment. The performance of classifiers evaluated based on; Precision, Recall and F1-score.


  Access Paper or Ask Questions

Who Blames or Endorses Whom? Entity-to-Entity Directed Sentiment Extraction in News Text

Jun 22, 2021
Kunwoo Park, Zhufeng Pan, Jungseock Joo

Understanding who blames or supports whom in news text is a critical research question in computational social science. Traditional methods and datasets for sentiment analysis are, however, not suitable for the domain of political text as they do not consider the direction of sentiments expressed between entities. In this paper, we propose a novel NLP task of identifying directed sentiment relationship between political entities from a given news document, which we call directed sentiment extraction. From a million-scale news corpus, we construct a dataset of news sentences where sentiment relations of political entities are manually annotated. We present a simple but effective approach for utilizing a pretrained transformer, which infers the target class by predicting multiple question-answering tasks and combining the outcomes. We demonstrate the utility of our proposed method for social science research questions by analyzing positive and negative opinions between political entities in two major events: 2016 U.S. presidential election and COVID-19. The newly proposed problem, data, and method will facilitate future studies on interdisciplinary NLP methods and applications.

* Published in Findings of ACL 2021 (Long paper). The manuscript is slightly revised after the camera ready version 

  Access Paper or Ask Questions

Natural Language Processing, Sentiment Analysis and Clinical Analytics

Feb 02, 2019
Adil Rajput

Recent advances in Big Data has prompted health care practitioners to utilize the data available on social media to discern sentiment and emotions expression. Health Informatics and Clinical Analytics depend heavily on information gathered from diverse sources. Traditionally, a healthcare practitioner will ask a patient to fill out a questionnaire that will form the basis of diagnosing the medical condition. However, medical practitioners have access to many sources of data including the patients writings on various media. Natural Language Processing (NLP) allows researchers to gather such data and analyze it to glean the underlying meaning of such writings. The field of sentiment analysis (applied to many other domains) depend heavily on techniques utilized by NLP. This work will look into various prevalent theories underlying the NLP field and how they can be leveraged to gather users sentiments on social media. Such sentiments can be culled over a period of time thus minimizing the errors introduced by data input and other stressors. Furthermore, we look at some applications of sentiment analysis and application of NLP to mental health. The reader will also learn about the NLTK toolkit that implements various NLP theories and how they can make the data scavenging process a lot easier.


  Access Paper or Ask Questions

Semi-supervised and Transfer learning approaches for low resource sentiment classification

Jun 07, 2018
Rahul Gupta, Saurabh Sahu, Carol Espy-Wilson, Shrikanth Narayanan

Sentiment classification involves quantifying the affective reaction of a human to a document, media item or an event. Although researchers have investigated several methods to reliably infer sentiment from lexical, speech and body language cues, training a model with a small set of labeled datasets is still a challenge. For instance, in expanding sentiment analysis to new languages and cultures, it may not always be possible to obtain comprehensive labeled datasets. In this paper, we investigate the application of semi-supervised and transfer learning methods to improve performances on low resource sentiment classification tasks. We experiment with extracting dense feature representations, pre-training and manifold regularization in enhancing the performance of sentiment classification systems. Our goal is a coherent implementation of these methods and we evaluate the gains achieved by these methods in matched setting involving training and testing on a single corpus setting as well as two cross corpora settings. In both the cases, our experiments demonstrate that the proposed methods can significantly enhance the model performance against a purely supervised approach, particularly in cases involving a handful of training data.

* 5 pages, Accepted to International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2018 

  Access Paper or Ask Questions

<<
23
24
25
26
27
28
29
30
31
32
33
34
35
>>