Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

OMNIRank: Risk Quantification for P2P Platforms with Deep Learning

Apr 27, 2017
Honglun Zhang, Haiyang Wang, Xiaming Chen, Yongkun Wang, Yaohui Jin

P2P lending presents as an innovative and flexible alternative for conventional lending institutions like banks, where lenders and borrowers directly make transactions and benefit each other without complicated verifications. However, due to lack of specialized laws, delegated monitoring and effective managements, P2P platforms may spawn potential risks, such as withdraw failures, investigation involvements and even runaway bosses, which cause great losses to lenders and are especially serious and notorious in China. Although there are abundant public information and data available on the Internet related to P2P platforms, challenges of multi-sourcing and heterogeneity matter. In this paper, we promote a novel deep learning model, OMNIRank, which comprehends multi-dimensional features of P2P platforms for risk quantification and produces scores for ranking. We first construct a large-scale flexible crawling framework and obtain great amounts of multi-source heterogeneous data of domestic P2P platforms since 2007 from the Internet. Purifications like duplication and noise removal, null handing, format unification and fusion are applied to improve data qualities. Then we extract deep features of P2P platforms via text comprehension, topic modeling, knowledge graph and sentiment analysis, which are delivered as inputs to OMNIRank, a deep learning model for risk quantification of P2P platforms. Finally, according to rankings generated by OMNIRank, we conduct flourish data visualizations and interactions, providing lenders with comprehensive information supports, decision suggestions and safety guarantees.

* 9 pages, in Chinese, 7 figures, CCFBD2016 

  Access Paper or Ask Questions

"What is Relevant in a Text Document?": An Interpretable Machine Learning Approach

Dec 23, 2016
Leila Arras, Franziska Horn, Grégoire Montavon, Klaus-Robert Müller, Wojciech Samek

Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be processed by a human in a lifetime. Besides predicting the text's category very accurately, it is also highly desirable to understand how and why the categorization process takes place. In this paper, we demonstrate that such understanding can be achieved by tracing the classification decision back to individual words using layer-wise relevance propagation (LRP), a recently developed technique for explaining predictions of complex non-linear classifiers. We train two word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt the LRP method to decompose the predictions of these models onto words. Resulting scores indicate how much individual words contribute to the overall classification decision. This enables one to distill relevant information from text documents without an explicit semantic information extraction step. We further use the word-wise relevance scores for generating novel vector-based document representations which capture semantic information. Based on these document vectors, we introduce a measure of model explanatory power and show that, although the SVM and CNN models perform similarly in terms of classification accuracy, the latter exhibits a higher level of explainability which makes it more comprehensible for humans and potentially more useful for other applications.

* 19 pages, 7 figures 

  Access Paper or Ask Questions

Teaching Deep Convolutional Neural Networks to Play Go

Jan 27, 2015
Christopher Clark, Amos Storkey

Mastering the game of Go has remained a long standing challenge to the field of AI. Modern computer Go systems rely on processing millions of possible future positions to play well, but intuitively a stronger and more 'humanlike' way to play the game would be to rely on pattern recognition abilities rather then brute force computation. Following this sentiment, we train deep convolutional neural networks to play Go by training them to predict the moves made by expert Go players. To solve this problem we introduce a number of novel techniques, including a method of tying weights in the network to 'hard code' symmetries that are expect to exist in the target function, and demonstrate in an ablation study they considerably improve performance. Our final networks are able to achieve move prediction accuracies of 41.1% and 44.4% on two different Go datasets, surpassing previous state of the art on this task by significant margins. Additionally, while previous move prediction programs have not yielded strong Go playing programs, we show that the networks trained in this work acquired high levels of skill. Our convolutional neural networks can consistently defeat the well known Go program GNU Go, indicating it is state of the art among programs that do not use Monte Carlo Tree Search. It is also able to win some games against state of the art Go playing program Fuego while using a fraction of the play time. This success at playing Go indicates high level principles of the game were learned.

* 9 pages, 8 figures, 5 tables. Corrected typos, minor adjustment to table format 

  Access Paper or Ask Questions

Stronger Data Poisoning Attacks Break Data Sanitization Defenses

Nov 02, 2018
Pang Wei Koh, Jacob Steinhardt, Percy Liang

Machine learning models trained on data from the outside world can be corrupted by data poisoning attacks that inject malicious points into the models' training sets. A common defense against these attacks is data sanitization: first filter out anomalous training points before training the model. Can data poisoning attacks break data sanitization defenses? In this paper, we develop three new attacks that can all bypass a broad range of data sanitization defenses, including commonly-used anomaly detectors based on nearest neighbors, training loss, and singular-value decomposition. For example, our attacks successfully increase the test error on the Enron spam detection dataset from 3% to 24% and on the IMDB sentiment classification dataset from 12% to 29% by adding just 3% poisoned data. In contrast, many existing attacks from the literature do not explicitly consider defenses, and we show that those attacks are ineffective in the presence of the defenses we consider. Our attacks are based on two ideas: (i) we coordinate our attacks to place poisoned points near one another, which fools some anomaly detectors, and (ii) we formulate each attack as a constrained optimization problem, with constraints designed to ensure that the poisoned points evade detection. While this optimization involves solving an expensive bilevel problem, we explore and develop three efficient approximations to this problem based on influence functions; minimax duality; and the Karush-Kuhn-Tucker (KKT) conditions. Our results underscore the urgent need to develop more sophisticated and robust defenses against data poisoning attacks.


  Access Paper or Ask Questions

Efficacy of BERT embeddings on predicting disaster from Twitter data

Aug 08, 2021
Ashis Kumar Chanda

Social media like Twitter provide a common platform to share and communicate personal experiences with other people. People often post their life experiences, local news, and events on social media to inform others. Many rescue agencies monitor this type of data regularly to identify disasters and reduce the risk of lives. However, it is impossible for humans to manually check the mass amount of data and identify disasters in real-time. For this purpose, many research works have been proposed to present words in machine-understandable representations and apply machine learning methods on the word representations to identify the sentiment of a text. The previous research methods provide a single representation or embedding of a word from a given document. However, the recent advanced contextual embedding method (BERT) constructs different vectors for the same word in different contexts. BERT embeddings have been successfully used in different natural language processing (NLP) tasks, yet there is no concrete analysis of how these representations are helpful in disaster-type tweet analysis. In this research work, we explore the efficacy of BERT embeddings on predicting disaster from Twitter data and compare these to traditional context-free word embedding methods (GloVe, Skip-gram, and FastText). We use both traditional machine learning methods and deep learning methods for this purpose. We provide both quantitative and qualitative results for this study. The results show that the BERT embeddings have the best results in disaster prediction task than the traditional word embeddings. Our codes are made freely accessible to the research community.


  Access Paper or Ask Questions

An enhanced Tree-LSTM architecture for sentence semantic modeling using typed dependencies

Feb 18, 2020
Jeena Kleenankandy, K. A. Abdul Nazeer

Tree-based Long short term memory (LSTM) network has become state-of-the-art for modeling the meaning of language texts as they can effectively exploit the grammatical syntax and thereby non-linear dependencies among words of the sentence. However, most of these models cannot recognize the difference in meaning caused by a change in semantic roles of words or phrases because they do not acknowledge the type of grammatical relations, also known as typed dependencies, in sentence structure. This paper proposes an enhanced LSTM architecture, called relation gated LSTM, which can model the relationship between two inputs of a sequence using a control input. We also introduce a Tree-LSTM model called Typed Dependency Tree-LSTM that uses the sentence dependency parse structure as well as the dependency type to embed sentence meaning into a dense vector. The proposed model outperformed its type-unaware counterpart in two typical NLP tasks - Semantic Relatedness Scoring and Sentiment Analysis, in a lesser number of training epochs. The results were comparable or competitive with other state-of-the-art models. Qualitative analysis showed that changes in the voice of sentences had little effect on the model's predicted scores, while changes in nominal (noun) words had a more significant impact. The model recognized subtle semantic relationships in sentence pairs. The magnitudes of learned typed dependencies embeddings were also in agreement with human intuitions. The research findings imply the significance of grammatical relations in sentence modeling. The proposed models would serve as a base for future researches in this direction.

* This is a preprint submitted to Journal of Information Processing and Management ( Elsevier ) on December 29, 2019 

  Access Paper or Ask Questions

Going Negative Online? -- A Study of Negative Advertising on Social Media

Oct 14, 2019
Hongtao Liu

A growing number of empirical studies suggest that negative advertising is effective in campaigning, while the mechanisms are rarely mentioned. With the scandal of Cambridge Analytica and Russian intervention behind the Brexit and the 2016 presidential election, people have become aware of the political ads on social media and have pressured congress to restrict political advertising on social media. Following the related legislation, social media companies began disclosing their political ads archive for transparency during the summer of 2018 when the midterm election campaign was just beginning. This research collects the data of the related political ads in the context of the U.S. midterm elections since August to study the overall pattern of political ads on social media and uses sets of machine learning methods to conduct sentiment analysis on these ads to classify the negative ads. A novel approach is applied that uses AI image recognition to study the image data. Through data visualization, this research shows that negative advertising is still the minority, Republican advertisers and third party organizations are more likely to engage in negative advertising than their counterparts. Based on ordinal regressions, this study finds that anger evoked information-seeking is one of the main mechanisms causing negative ads to be more engaging and effective rather than the negative bias theory. Overall, this study provides a unique understanding of political advertising on social media by applying innovative data science methods. Further studies can extend the findings, methods, and datasets in this study, and several suggestions are given for future research.


  Access Paper or Ask Questions

Deep Neural Networks for Bot Detection

Feb 18, 2018
Sneha Kudugunta, Emilio Ferrara

The problem of detecting bots, automated social media accounts governed by software but disguising as human users, has strong implications. For example, bots have been used to sway political elections by distorting online discourse, to manipulate the stock market, or to push anti-vaccine conspiracy theories that caused health epidemics. Most techniques proposed to date detect bots at the account level, by processing large amount of social media posts, and leveraging information from network structure, temporal dynamics, sentiment analysis, etc. In this paper, we propose a deep neural network based on contextual long short-term memory (LSTM) architecture that exploits both content and metadata to detect bots at the tweet level: contextual features are extracted from user metadata and fed as auxiliary input to LSTM deep nets processing the tweet text. Another contribution that we make is proposing a technique based on synthetic minority oversampling to generate a large labeled dataset, suitable for deep nets training, from a minimal amount of labeled data (roughly 3,000 examples of sophisticated Twitter bots). We demonstrate that, from just one single tweet, our architecture can achieve high classification accuracy (AUC > 96%) in separating bots from humans. We apply the same architecture to account-level bot detection, achieving nearly perfect classification accuracy (AUC > 99%). Our system outperforms previous state of the art while leveraging a small and interpretable set of features yet requiring minimal training data.

* Information Sciences, Volume 467, October 2018, Pages 312-322, 2018 

  Access Paper or Ask Questions

Oscillatory Fourier Neural Network: A Compact and Efficient Architecture for Sequential Processing

Sep 14, 2021
Bing Han, Cheng Wang, Kaushik Roy

Tremendous progress has been made in sequential processing with the recent advances in recurrent neural networks. However, recurrent architectures face the challenge of exploding/vanishing gradients during training, and require significant computational resources to execute back-propagation through time. Moreover, large models are typically needed for executing complex sequential tasks. To address these challenges, we propose a novel neuron model that has cosine activation with a time varying component for sequential processing. The proposed neuron provides an efficient building block for projecting sequential inputs into spectral domain, which helps to retain long-term dependencies with minimal extra model parameters and computation. A new type of recurrent network architecture, named Oscillatory Fourier Neural Network, based on the proposed neuron is presented and applied to various types of sequential tasks. We demonstrate that recurrent neural network with the proposed neuron model is mathematically equivalent to a simplified form of discrete Fourier transform applied onto periodical activation. In particular, the computationally intensive back-propagation through time in training is eliminated, leading to faster training while achieving the state of the art inference accuracy in a diverse group of sequential tasks. For instance, applying the proposed model to sentiment analysis on IMDB review dataset reaches 89.4% test accuracy within 5 epochs, accompanied by over 35x reduction in the model size compared to LSTM. The proposed novel RNN architecture is well poised for intelligent sequential processing in resource constrained hardware.


  Access Paper or Ask Questions

Semantic-based End-to-End Learning for Typhoon Intensity Prediction

Mar 22, 2020
Hamada M. Zahera, Mohamed Ahmed Sherif, Axel Ngonga

Disaster prediction is one of the most critical tasks towards disaster surveillance and preparedness. Existing technologies employ different machine learning approaches to predict incoming disasters from historical environmental data. However, for short-term disasters (e.g., earthquakes), historical data alone has a limited prediction capability. Therefore, additional sources of warnings are required for accurate prediction. We consider social media as a supplementary source of knowledge in addition to historical environmental data. However, social media posts (e.g., tweets) is very informal and contains only limited content. To alleviate these limitations, we propose the combination of semantically-enriched word embedding models to represent entities in tweets with their semantic representations computed with the traditionalword2vec. Moreover, we study how the correlation between social media posts and typhoons magnitudes (also called intensities)-in terms of volume and sentiments of tweets-. Based on these insights, we propose an end-to-end based framework that learns from disaster-related tweets and environmental data to improve typhoon intensity prediction. This paper is an extension of our work originally published in K-CAP 2019 [32]. We extended this paper by building our framework with state-of-the-art deep neural models, up-dated our dataset with new typhoons and their tweets to-date and benchmark our approach against recent baselines in disaster prediction. Our experimental results show that our approach outperforms the accuracy of the state-of-the-art baselines in terms of F1-score with (CNN by12.1%and BiLSTM by3.1%) improvement compared with last experiments


  Access Paper or Ask Questions

<<
250
251
252
253
254
255
256
257
258
259
260
261
262
>>