Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

BERT2DNN: BERT Distillation with Massive Unlabeled Data for Online E-Commerce Search

Oct 20, 2020
Yunjiang Jiang, Yue Shang, Ziyang Liu, Hongwei Shen, Yun Xiao, Wei Xiong, Sulong Xu, Weipeng Yan, Di Jin

Relevance has significant impact on user experience and business profit for e-commerce search platform. In this work, we propose a data-driven framework for search relevance prediction, by distilling knowledge from BERT and related multi-layer Transformer teacher models into simple feed-forward networks with large amount of unlabeled data. The distillation process produces a student model that recovers more than 97\% test accuracy of teacher models on new queries, at a serving cost that's several magnitude lower (latency 150x lower than BERT-Base and 15x lower than the most efficient BERT variant, TinyBERT). The applications of temperature rescaling and teacher model stacking further boost model accuracy, without increasing the student model complexity. We present experimental results on both in-house e-commerce search relevance data as well as a public data set on sentiment analysis from the GLUE benchmark. The latter takes advantage of another related public data set of much larger scale, while disregarding its potentially noisy labels. Embedding analysis and case study on the in-house data further highlight the strength of the resulting model. By making the data processing and model training source code public, we hope the techniques presented here can help reduce energy consumption of the state of the art Transformer models and also level the playing field for small organizations lacking access to cutting edge machine learning hardwares.

* 10 pages, 7 figures, to appear in ICDM 2020 

  Access Paper or Ask Questions

Pre-Training with Whole Word Masking for Chinese BERT

Jun 19, 2019
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub:

* 10 pages 

  Access Paper or Ask Questions

Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Oct 06, 2021
Rishabh Bhardwaj, Tushar Vaidya, Soujanya Poria

Enhancing the user experience is an essential task for application service providers. For instance, two users living wide apart may have different tastes of food. A food recommender mobile application installed on an edge device might want to learn from user feedback (reviews) to satisfy the client's needs pertaining to distinct domains. Retrieving user data comes at the cost of privacy while asking for model parameters trained on a user device becomes space inefficient at a large scale. In this work, we propose an approach to learn a central (global) model from the federation of (local) models which are trained on user-devices, without disclosing the local data or model parameters to the server. We propose a federation mechanism for the problems with natural similarity metric between the labels which commonly appear in natural language understanding (NLU) tasks. To learn the global model, the objective is to minimize the optimal transport cost of the global model's predictions from the confident sum of soft-targets assigned by local models. The confidence (a model weighting scheme) score of a model is defined as the L2 distance of a model's prediction from its probability bias. The method improves the global model's performance over the baseline designed on three NLU tasks with intrinsic label space semantics, i.e., fine-grained sentiment analysis, emotion recognition in conversation, and natural language inference. We make our codes public at


  Access Paper or Ask Questions

Evaluating the Performance of Some Local Optimizers for Variational Quantum Classifiers

Feb 17, 2021
Nisheeth Joshi, Pragya Katyayan, Syed Afroz Ahmed

In this paper, we have studied the performance and role of local optimizers in quantum variational circuits. We studied the performance of the two most popular optimizers and compared their results with some popular classical machine learning algorithms. The classical algorithms we used in our study are support vector machine (SVM), gradient boosting (GB), and random forest (RF). These were compared with a variational quantum classifier (VQC) using two sets of local optimizers viz AQGD and COBYLA. For experimenting with VQC, IBM Quantum Experience and IBM Qiskit was used while for classical machine learning models, sci-kit learn was used. The results show that machine learning on noisy immediate scale quantum machines can produce comparable results as on classical machines. For our experiments, we have used a popular restaurant sentiment analysis dataset. The extracted features from this dataset and then after applying PCA reduced the feature set into 5 features. Quantum ML models were trained using 100 epochs and 150 epochs on using EfficientSU2 variational circuit. Overall, four Quantum ML models were trained and three Classical ML models were trained. The performance of the trained models was evaluated using standard evaluation measures viz, Accuracy, Precision, Recall, F-Score. In all the cases AQGD optimizer-based model with 100 Epochs performed better than all other models. It produced an accuracy of 77% and an F-Score of 0.785 which were highest across all the trained models.

* 13 pages, 3 Figures, 10 Tables; To Be Published in IOP Journal of Physics: Conference Proceedings for 1st International Conference on Computational Intelligence and Energy Advancements held on December 12-13, 2020 

  Access Paper or Ask Questions

Incremental Active Opinion Learning Over a Stream of Opinionated Documents

Sep 03, 2015
Max Zimmermann, Eirini Ntoutsi, Myra Spiliopoulou

Applications that learn from opinionated documents, like tweets or product reviews, face two challenges. First, the opinionated documents constitute an evolving stream, where both the author's attitude and the vocabulary itself may change. Second, labels of documents are scarce and labels of words are unreliable, because the sentiment of a word depends on the (unknown) context in the author's mind. Most of the research on mining over opinionated streams focuses on the first aspect of the problem, whereas for the second a continuous supply of labels from the stream is assumed. Such an assumption though is utopian as the stream is infinite and the labeling cost is prohibitive. To this end, we investigate the potential of active stream learning algorithms that ask for labels on demand. Our proposed ACOSTREAM 1 approach works with limited labels: it uses an initial seed of labeled documents, occasionally requests additional labels for documents from the human expert and incrementally adapts to the underlying stream while exploiting the available labeled documents. In its core, ACOSTREAM consists of a MNB classifier coupled with "sampling" strategies for requesting class labels for new unlabeled documents. In the experiments, we evaluate the classifier performance over time by varying: (a) the class distribution of the opinionated stream, while assuming that the set of the words in the vocabulary is fixed but their polarities may change with the class distribution; and (b) the number of unknown words arriving at each moment, while the class polarity may also change. Our results show that active learning on a stream of opinionated documents, delivers good performance while requiring a small selection of labels

* 10 pages, 14 figures, conference: WISDOM (KDD'15) 

  Access Paper or Ask Questions

Spoken Moments: Learning Joint Audio-Visual Representations from Video Descriptions

May 10, 2021
Mathew Monfort, SouYoung Jin, Alexander Liu, David Harwath, Rogerio Feris, James Glass, Aude Oliva

When people observe events, they are able to abstract key information and build concise summaries of what is happening. These summaries include contextual and semantic information describing the important high-level details (what, where, who and how) of the observed event and exclude background information that is deemed unimportant to the observer. With this in mind, the descriptions people generate for videos of different dynamic events can greatly improve our understanding of the key information of interest in each video. These descriptions can be captured in captions that provide expanded attributes for video labeling (e.g. actions/objects/scenes/sentiment/etc.) while allowing us to gain new insight into what people find important or necessary to summarize specific events. Existing caption datasets for video understanding are either small in scale or restricted to a specific domain. To address this, we present the Spoken Moments (S-MiT) dataset of 500k spoken captions each attributed to a unique short video depicting a broad range of different events. We collect our descriptions using audio recordings to ensure that they remain as natural and concise as possible while allowing us to scale the size of a large classification dataset. In order to utilize our proposed dataset, we present a novel Adaptive Mean Margin (AMM) approach to contrastive learning and evaluate our models on video/caption retrieval on multiple datasets. We show that our AMM approach consistently improves our results and that models trained on our Spoken Moments dataset generalize better than those trained on other video-caption datasets.

* To appear at CVPR 2021 

  Access Paper or Ask Questions

It's the Journey Not the Destination: Building Genetic Algorithms Practitioners Can Trust

Oct 13, 2020
Jakub Vincalek, Sean Walton, Ben Evans

Genetic algorithms have been developed for decades by researchers in academia and perform well in engineering applications, yet their uptake in industry remains limited. In order to understand why this is the case, the opinions of users of engineering design tools were gathered. The results from a survey showing the attitudes of engineers and students with design experience with respect to optimisation algorithms are presented. A survey was designed to answer two research questions: To what extent is there a pre-existing sentiment (negative or positive) among students, engineers, and managers towards genetic algorithm-based design? and What are the requirements of practitioners with regards to design optimisation and the design optimisation process? A total of 23 participants (N = 23) took part in the 3-part mixed methods survey. Thematic analysis was conducted on the open-ended questions. A common thread throughout participants responses is that there is a question of trust towards genetic algorithms within industry. Perhaps surprising is that the key to gaining this trust is not producing good results, but creating algorithms which explain the process they take in reaching a result. Participants have expressed a desire to continue to remain in the design loop. This is at odds with the motivation of a portion of the genetic algorithms community of removing humans from the loop. It is clear we need to take a different approach to increase industrial uptake. Based on this, the following recommendations have been made to increase their use in industry: an increase of transparency and explainability of genetic algorithms, an increased focus on user experience, better communication between developers and engineers, and visualising algorithm behaviour.

* 10 pages, 4 figures, submitted to IEEE Transactions on Evolutionary Computation 

  Access Paper or Ask Questions

Human-centric Dialog Training via Offline Reinforcement Learning

Oct 12, 2020
Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah Jones, Shixiang Shane Gu, Rosalind Picard

How can we train a dialog model to produce better conversations by learning from human feedback, without the risk of humans teaching it harmful chat behaviors? We start by hosting models online, and gather human feedback from real-time, open-ended conversations, which we then use to train and improve the models using offline reinforcement learning (RL). We identify implicit conversational cues including language similarity, elicitation of laughter, sentiment, and more, which indicate positive human feedback, and embed these in multiple reward functions. A well-known challenge is that learning an RL policy in an offline setting usually fails due to the lack of ability to explore and the tendency to make over-optimistic estimates of future reward. These problems become even harder when using RL for language models, which can easily have a 20,000 action vocabulary and many possible reward functions. We solve the challenge by developing a novel class of offline RL algorithms. These algorithms use KL-control to penalize divergence from a pre-trained prior language model, and use a new strategy to make the algorithm pessimistic, instead of optimistic, in the face of uncertainty. We test the resulting dialog model with ratings from 80 users in an open-domain setting and find it achieves significant improvements over existing deep offline RL approaches. The novel offline RL method is viable for improving any existing generative dialog model using a static dataset of human feedback.

* To appear in EMNLP 2020 (long paper) 

  Access Paper or Ask Questions

Predicting Strategic Behavior from Free Text

Apr 06, 2020
Omer Ben-Porat, Sharon Hirsch, Lital Kuchy, Guy Elad, Roi Reichart, Moshe Tennenholtz

The connection between messaging and action is fundamental both to web applications, such as web search and sentiment analysis, and to economics. However, while prominent online applications exploit messaging in natural (human) language in order to predict non-strategic action selection, the economics literature focuses on the connection between structured stylized messaging to strategic decisions in games and multi-agent encounters. This paper aims to connect these two strands of research, which we consider highly timely and important due to the vast online textual communication on the web. Particularly, we introduce the following question: can free text expressed in natural language serve for the prediction of action selection in an economic context, modeled as a game? In order to initiate the research on this question, we introduce the study of an individual's action prediction in a one-shot game based on free text he/she provides, while being unaware of the game to be played. We approach the problem by attributing commonsensical personality attributes via crowd-sourcing to free texts written by individuals, and employing transductive learning to predict actions taken by these individuals in one-shot games based on these attributes. Our approach allows us to train a single classifier that can make predictions with respect to actions taken in multiple games. In experiments with three well-studied games, our algorithm compares favorably with strong alternative approaches. In ablation analysis, we demonstrate the importance of our modeling choices -- the representation of the text with the commonsensical personality attributes and our classifier -- to the predictive power of our model.

* Accepted to Journal of Artificial Intelligence Research (JAIR), 2020 

  Access Paper or Ask Questions

AI in Pursuit of Happiness, Finding Only Sadness: Multi-Modal Facial Emotion Recognition Challenge

Oct 24, 2019
Carl Norman

The importance of automated Facial Emotion Recognition (FER) grows the more common human-machine interactions become, which will only continue to increase dramatically with time. A common method to describe human sentiment or feeling is the categorical model the `7 basic emotions', consisting of `Angry', `Disgust', `Fear', `Happiness', `Sadness', `Surprise' and `Neutral'. The `Emotion Recognition in the Wild' (EmotiW) competition is now in its 7th year and has become the standard benchmark for measuring FER performance. The focus of this paper is the EmotiW sub-challenge of classifying videos in the `Acted Facial Expression in the Wild' (AFEW) dataset, consisting of both visual and audio modalities, into one of the above classes. Machine learning has exploded as a research topic in recent years, with advancements in `Deep Learning' a key part of this. Although Deep Learning techniques have been widely applied to the FER task by entrants in previous years, this paper has two main contributions: (i) to apply the latest `state-of-the-art' visual and temporal networks and (ii) exploring various methods of fusing features extracted from the visual and audio elements to enrich the information available to the final model making the prediction. There are a number of complex issues that arise when trying to classify emotions for `in-the-wild' video sequences, which the above two approaches attempt to directly address. There are some positive findings when comparing the results of this paper to past submissions, indicating that further research into the proposed methods and fine-tuning of the models deployed, could result in another step forwards in the field of automated FER.

  Access Paper or Ask Questions