Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

L3Cube-HingCorpus and HingBERT: A Code Mixed Hindi-English Dataset and BERT Language Models

Apr 18, 2022
Ravindra Nayak, Raviraj Joshi

Code-switching occurs when more than one language is mixed in a given sentence or a conversation. This phenomenon is more prominent on social media platforms and its adoption is increasing over time. Therefore code-mixed NLP has been extensively studied in the literature. As pre-trained transformer-based architectures are gaining popularity, we observe that real code-mixing data are scarce to pre-train large language models. We present L3Cube-HingCorpus, the first large-scale real Hindi-English code mixed data in a Roman script. It consists of 52.93M sentences and 1.04B tokens, scraped from Twitter. We further present HingBERT, HingMBERT, HingRoBERTa, and HingGPT. The BERT models have been pre-trained on codemixed HingCorpus using masked language modelling objectives. We show the effectiveness of these BERT models on the subsequent downstream tasks like code-mixed sentiment analysis, POS tagging, NER, and LID from the GLUECoS benchmark. The HingGPT is a GPT2 based generative transformer model capable of generating full tweets. We also release L3Cube-HingLID Corpus, the largest code-mixed Hindi-English language identification(LID) dataset and HingBERT-LID, a production-quality LID model to facilitate capturing of more code-mixed data using the process outlined in this work. The dataset and models are available at .

  Access Paper or Ask Questions

A comprehensive empirical analysis on cross-domain semantic enrichment for detection of depressive language

Jun 24, 2021
Nawshad Farruque, Randy Goebel, Osmar Zaiane

We analyze the process of creating word embedding feature representations designed for a learning task when annotated data is scarce, for example, in depressive language detection from Tweets. We start with a rich word embedding pre-trained from a large general dataset, which is then augmented with embeddings learned from a much smaller and more specific domain dataset through a simple non-linear mapping mechanism. We also experimented with several other more sophisticated methods of such mapping including, several auto-encoder based and custom loss-function based methods that learn embedding representations through gradually learning to be close to the words of similar semantics and distant to dissimilar semantics. Our strengthened representations better capture the semantics of the depression domain, as it combines the semantics learned from the specific domain coupled with word coverage from the general language. We also present a comparative performance analyses of our word embedding representations with a simple bag-of-words model, well known sentiment and psycholinguistic lexicons, and a general pre-trained word embedding. When used as feature representations for several different machine learning methods, including deep learning models in a depressive Tweets identification task, we show that our augmented word embedding representations achieve a significantly better F1 score than the others, specially when applied to a high quality dataset. Also, we present several data ablation tests which confirm the efficacy of our augmentation techniques.

* This is an extension over ECML-PKDD, 2019 paper "Augmenting Semantic Representation of Depressive Language: from Forums to Microblogs", with more embedding mapping/augmentation methods and data ablation tests. These experiments were done in the year 2019 

  Access Paper or Ask Questions

E-BERT: A Phrase and Product Knowledge Enhanced Language Model for E-commerce

Sep 10, 2020
Denghui Zhang, Zixuan Yuan, Yanchi Liu, Zuohui Fu, Fuzhen Zhuang, Pengyang Wang, Haifeng Chen, Hui Xiong

Pre-trained language models such as BERT have achieved great success in a broad range of natural language processing tasks. However, BERT cannot well support E-commerce related tasks due to the lack of two levels of domain knowledge, i.e., phrase-level and product-level. On one hand, many E-commerce tasks require an accurate understanding of domain phrases, whereas such fine-grained phrase-level knowledge is not explicitly modeled by BERT's training objective. On the other hand, product-level knowledge like product associations can enhance the language modeling of E-commerce, but they are not factual knowledge thus using them indiscriminately may introduce noise. To tackle the problem, we propose a unified pre-training framework, namely, E-BERT. Specifically, to preserve phrase-level knowledge, we introduce Adaptive Hybrid Masking, which allows the model to adaptively switch from learning preliminary word knowledge to learning complex phrases, based on the fitting progress of two modes. To utilize product-level knowledge, we introduce Neighbor Product Reconstruction, which trains E-BERT to predict a product's associated neighbors with a denoising cross attention layer. Our investigation reveals promising results in four downstream tasks, i.e., review-based question answering, aspect extraction, aspect sentiment classification, and product classification.

  Access Paper or Ask Questions

DiSAN: Directional Self-Attention Network for RNN/CNN-Free Language Understanding

Nov 20, 2017
Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, Chengqi Zhang

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

* 10 pages, 8 figures; Accepted in AAAI-18 

  Access Paper or Ask Questions

Distilling the Knowledge of Romanian BERTs Using Multiple Teachers

Jan 11, 2022
Andrei-Marius Avram, Darius Catrina, Dumitru-Clementin Cercel, Mihai Dascălu, Traian Rebedea, Vasile Păiş, Dan Tufiş

Running large-scale pre-trained language models in computationally constrained environments remains a challenging problem yet to be addressed, while transfer learning from these models has become prevalent in Natural Language Processing tasks. Several solutions, including knowledge distillation, network quantization, or network pruning have been previously proposed; however, these approaches focus mostly on the English language, thus widening the gap when considering low-resource languages. In this work, we introduce three light and fast versions of distilled BERT models for the Romanian language: Distil-BERT-base-ro, Distil-RoBERT-base, and DistilMulti-BERT-base-ro. The first two models resulted from the individual distillation of knowledge from two base versions of Romanian BERTs available in literature, while the last one was obtained by distilling their ensemble. To our knowledge, this is the first attempt to create publicly available Romanian distilled BERT models, which were thoroughly evaluated on five tasks: part-of-speech tagging, named entity recognition, sentiment analysis, semantic textual similarity, and dialect identification. Our experimental results argue that the three distilled models maintain most performance in terms of accuracy with their teachers, while being twice as fast on a GPU and ~35% smaller. In addition, we further test the similarity between the predictions of our students versus their teachers by measuring their label and probability loyalty, together with regression loyalty - a new metric introduced in this work.

  Access Paper or Ask Questions

Learning Neural Models for Natural Language Processing in the Face of Distributional Shift

Sep 03, 2021
Paul Michel

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

* PhD thesis 

  Access Paper or Ask Questions

Asymmetric Tri-training for Unsupervised Domain Adaptation

May 13, 2017
Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada

Deep-layered models trained on a large number of labeled samples boost the accuracy of many tasks. It is important to apply such models to different domains because collecting many labeled samples in various domains is expensive. In unsupervised domain adaptation, one needs to train a classifier that works well on a target domain when provided with labeled source samples and unlabeled target samples. Although many methods aim to match the distributions of source and target samples, simply matching the distribution cannot ensure accuracy on the target domain. To learn discriminative representations for the target domain, we assume that artificially labeling target samples can result in a good representation. Tri-training leverages three classifiers equally to give pseudo-labels to unlabeled samples, but the method does not assume labeling samples generated from a different domain.In this paper, we propose an asymmetric tri-training method for unsupervised domain adaptation, where we assign pseudo-labels to unlabeled samples and train neural networks as if they are true labels. In our work, we use three networks asymmetrically. By asymmetric, we mean that two networks are used to label unlabeled target samples and one network is trained by the samples to obtain target-discriminative representations. We evaluate our method on digit recognition and sentiment analysis datasets. Our proposed method achieves state-of-the-art performance on the benchmark digit recognition datasets of domain adaptation.

* TBA on ICML2017 

  Access Paper or Ask Questions

Web search queries can predict stock market volumes

Jun 04, 2012
Ilaria Bordino, Stefano Battiston, Guido Caldarelli, Matthieu Cristelli, Antti Ukkonen, Ingmar Weber

We live in a computerized and networked society where many of our actions leave a digital trace and affect other people's actions. This has lead to the emergence of a new data-driven research field: mathematical methods of computer science, statistical physics and sociometry provide insights on a wide range of disciplines ranging from social science to human mobility. A recent important discovery is that query volumes (i.e., the number of requests submitted by users to search engines on the www) can be used to track and, in some cases, to anticipate the dynamics of social phenomena. Successful exemples include unemployment levels, car and home sales, and epidemics spreading. Few recent works applied this approach to stock prices and market sentiment. However, it remains unclear if trends in financial markets can be anticipated by the collective wisdom of on-line users on the web. Here we show that trading volumes of stocks traded in NASDAQ-100 are correlated with the volumes of queries related to the same stocks. In particular, query volumes anticipate in many cases peaks of trading by one day or more. Our analysis is carried out on a unique dataset of queries, submitted to an important web search engine, which enable us to investigate also the user behavior. We show that the query volume dynamics emerges from the collective but seemingly uncoordinated activity of many users. These findings contribute to the debate on the identification of early warnings of financial systemic risk, based on the activity of users of the www.

* 29 pages, 11 figures, 11 tables + Supporting Information 

  Access Paper or Ask Questions

Learning Data Teaching Strategies Via Knowledge Tracing

Nov 13, 2021
Ghodai Abdelrahman, Qing Wang

Teaching plays a fundamental role in human learning. Typically, a human teaching strategy would involve assessing a student's knowledge progress for tailoring the teaching materials in a way that enhances the learning progress. A human teacher would achieve this by tracing a student's knowledge over important learning concepts in a task. Albeit, such teaching strategy is not well exploited yet in machine learning as current machine teaching methods tend to directly assess the progress on individual training samples without paying attention to the underlying learning concepts in a learning task. In this paper, we propose a novel method, called Knowledge Augmented Data Teaching (KADT), which can optimize a data teaching strategy for a student model by tracing its knowledge progress over multiple learning concepts in a learning task. Specifically, the KADT method incorporates a knowledge tracing model to dynamically capture the knowledge progress of a student model in terms of latent learning concepts. Then we develop an attention pooling mechanism to distill knowledge representations of a student model with respect to class labels, which enables to develop a data teaching strategy on critical training samples. We have evaluated the performance of the KADT method on four different machine learning tasks including knowledge tracing, sentiment analysis, movie recommendation, and image classification. The results comparing to the state-of-the-art methods empirically validate that KADT consistently outperforms others on all tasks.

  Access Paper or Ask Questions

How do Decisions Emerge across Layers in Neural Models? Interpretation with Differentiable Masking

Apr 30, 2020
Nicola De Cao, Michael Schlichtkrull, Wilker Aziz, Ivan Titov

Attribution methods assess the contribution of inputs (e.g., words) to the model prediction. One way to do so is erasure: a subset of inputs is considered irrelevant if it can be removed without affecting the model prediction. Despite its conceptual simplicity, erasure is not commonly used in practice. First, the objective is generally intractable, and approximate search or leave-one-out estimates are typically used instead; both approximations may be inaccurate and remain very expensive with modern deep (e.g., BERT-based) NLP models. Second, the method is susceptible to the hindsight bias: the fact that a token can be dropped does not mean that the model `knows' it can be dropped. The resulting pruning is over-aggressive and does not reflect how the model arrives at the prediction. To deal with these two challenges, we introduce Differentiable Masking. DiffMask relies on learning sparse stochastic gates (i.e., masks) to completely mask-out subsets of the input while maintaining end-to-end differentiability. The decision to include or disregard an input token is made with a simple linear model based on intermediate hidden layers of the analyzed model. First, this makes the approach efficient at test time because we predict rather than search. Second, as with probing classifiers, this reveals what the network `knows' at the corresponding layers. This lets us not only plot attribution heatmaps but also analyze how decisions are formed across network layers. We use DiffMask to study BERT models on sentiment classification and question answering.

* 19 pages, 14 figures, 4 tables 

  Access Paper or Ask Questions