Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

If you've got it, flaunt it: Making the most of fine-grained sentiment annotations

Jan 30, 2021
Jeremy Barnes, Lilja Øvrelid, Erik Velldal

Fine-grained sentiment analysis attempts to extract sentiment holders, targets and polar expressions and resolve the relationship between them, but progress has been hampered by the difficulty of annotation. Targeted sentiment analysis, on the other hand, is a more narrow task, focusing on extracting sentiment targets and classifying their polarity.In this paper, we explore whether incorporating holder and expression information can improve target extraction and classification and perform experiments on eight English datasets. We conclude that jointly predicting target and polarity BIO labels improves target extraction, and that augmenting the input text with gold expressions generally improves targeted polarity classification. This highlights the potential importance of annotating expressions for fine-grained sentiment datasets. At the same time, our results show that performance of current models for predicting polar expressions is poor, hampering the benefit of this information in practice.

* To appear in EACL 2021 

  Access Paper or Ask Questions

Is it Great or Terrible? Preserving Sentiment in Neural Machine Translation of Arabic Reviews

Oct 26, 2020
Hadeel Saadany, Constantin Orasan

Since the advent of Neural Machine Translation (NMT) approaches there has been a tremendous improvement in the quality of automatic translation. However, NMT output still lacks accuracy in some low-resource languages and sometimes makes major errors that need extensive post-editing. This is particularly noticeable with texts that do not follow common lexico-grammatical standards, such as user generated content (UGC). In this paper we investigate the challenges involved in translating book reviews from Arabic into English, with particular focus on the errors that lead to incorrect translation of sentiment polarity. Our study points to the special characteristics of Arabic UGC, examines the sentiment transfer errors made by Google Translate of Arabic UGC to English, analyzes why the problem occurs, and proposes an error typology specific of the translation of Arabic UGC. Our analysis shows that the output of online translation tools of Arabic UGC can either fail to transfer the sentiment at all by producing a neutral target text, or completely flips the sentiment polarity of the target word or phrase and hence delivers a wrong affect message. We address this problem by fine-tuning an NMT model with respect to sentiment polarity showing that this approach can significantly help with correcting sentiment errors detected in the online translation of Arabic UGC.

  Access Paper or Ask Questions

Quantifying the Effect of Sentiment on Information Diffusion in Social Media

Jun 19, 2015
Emilio Ferrara, Zeyao Yang

Social media have become the main vehicle of information production and consumption online. Millions of users every day log on their Facebook or Twitter accounts to get updates and news, read about their topics of interest, and become exposed to new opportunities and interactions. Although recent studies suggest that the contents users produce will affect the emotions of their readers, we still lack a rigorous understanding of the role and effects of contents sentiment on the dynamics of information diffusion. This work aims at quantifying the effect of sentiment on information diffusion, to understand: (i) whether positive conversations spread faster and/or broader than negative ones (or vice-versa); (ii) what kind of emotions are more typical of popular conversations on social media; and, (iii) what type of sentiment is expressed in conversations characterized by different temporal dynamics. Our findings show that, at the level of contents, negative messages spread faster than positive ones, but positive ones reach larger audiences, suggesting that people are more inclined to share and favorite positive contents, the so-called positive bias. As for the entire conversations, we highlight how different temporal dynamics exhibit different sentiment patterns: for example, positive sentiment builds up for highly-anticipated events, while unexpected events are mainly characterized by negative sentiment. Our contribution is a milestone to understand how the emotions expressed in short texts affect their spreading in online social ecosystems, and may help to craft effective policies and strategies for content generation and diffusion.

* PeerJ Computer Science, 1, e26. 2015 
* 10 pages, 5 figures 

  Access Paper or Ask Questions

Getting the subtext without the text: Scalable multimodal sentiment classification from visual and acoustic modalities

Jul 03, 2018
Nathaniel Blanchard, Daniel Moreira, Aparna Bharati, Walter J. Scheirer

In the last decade, video blogs (vlogs) have become an extremely popular method through which people express sentiment. The ubiquitousness of these videos has increased the importance of multimodal fusion models, which incorporate video and audio features with traditional text features for automatic sentiment detection. Multimodal fusion offers a unique opportunity to build models that learn from the full depth of expression available to human viewers. In the detection of sentiment in these videos, acoustic and video features provide clarity to otherwise ambiguous transcripts. In this paper, we present a multimodal fusion model that exclusively uses high-level video and audio features to analyze spoken sentences for sentiment. We discard traditional transcription features in order to minimize human intervention and to maximize the deployability of our model on at-scale real-world data. We select high-level features for our model that have been successful in nonaffect domains in order to test their generalizability in the sentiment detection domain. We train and test our model on the newly released CMU Multimodal Opinion Sentiment and Emotion Intensity (CMUMOSEI) dataset, obtaining an F1 score of 0.8049 on the validation set and an F1 score of 0.6325 on the held-out challenge test set.

* Published in the First Workshop on Computational Modeling of Human Multimodal Language - ACL 2018 

  Access Paper or Ask Questions

An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets

Nov 04, 2021
Gias Uddin, Yann-Gael Gueheneuc, Foutse Khomh, Chanchal K Roy

Sentiment analysis in software engineering (SE) has shown promise to analyze and support diverse development activities. We report the results of an empirical study that we conducted to determine the feasibility of developing an ensemble engine by combining the polarity labels of stand-alone SE-specific sentiment detectors. Our study has two phases. In the first phase, we pick five SE-specific sentiment detection tools from two recently published papers by Lin et al. [31, 32], who first reported negative results with standalone sentiment detectors and then proposed an improved SE-specific sentiment detector, POME [31]. We report the study results on 17,581 units (sentences/documents) coming from six currently available sentiment benchmarks for SE. We find that the existing tools can be complementary to each other in 85-95% of the cases, i.e., one is wrong, but another is right. However, a majority voting-based ensemble of those tools fails to improve the accuracy of sentiment detection. We develop Sentisead, a supervised tool by combining the polarity labels and bag of words as features. Sentisead improves the performance (F1-score) of the individual tools by 4% (over Senti4SD [5]) - 100% (over POME [31]). In a second phase, we compare and improve Sentisead infrastructure using Pre-trained Transformer Models (PTMs). We find that a Sentisead infrastructure with RoBERTa as the ensemble of the five stand-alone rule-based and shallow learning SE-specific tools from Lin et al. [31, 32] offers the best F1-score of 0.805 across the six datasets, while a stand-alone RoBERTa shows an F1-score of 0.801.

* ACM Transactions on Software Engineering and Methodology (TOSEM), 2021 

  Access Paper or Ask Questions

A Comprehensive Overview of Recommender System and Sentiment Analysis

Sep 18, 2021
Sumaia Mohammed AL-Ghuribi, Shahrul Azman Mohd Noah

Recommender system has been proven to be significantly crucial in many fields and is widely used by various domains. Most of the conventional recommender systems rely on the numeric rating given by a user to reflect his opinion about a consumed item; however, these ratings are not available in many domains. As a result, a new source of information represented by the user-generated reviews is incorporated in the recommendation process to compensate for the lack of these ratings. The reviews contain prosperous and numerous information related to the whole item or a specific feature that can be extracted using the sentiment analysis field. This paper gives a comprehensive overview to help researchers who aim to work with recommender system and sentiment analysis. It includes a background of the recommender system concept, including phases, approaches, and performance metrics used in recommender systems. Then, it discusses the sentiment analysis concept and highlights the main points in the sentiment analysis, including level, approaches, and focuses on aspect-based sentiment analysis.

  Access Paper or Ask Questions

Sentiment Analysis for Troll Detection on Weibo

Mar 07, 2021
Zidong Jiang, Fabio Di Troia, Mark Stamp

The impact of social media on the modern world is difficult to overstate. Virtually all companies and public figures have social media accounts on popular platforms such as Twitter and Facebook. In China, the micro-blogging service provider, Sina Weibo, is the most popular such service. To influence public opinion, Weibo trolls -- the so called Water Army -- can be hired to post deceptive comments. In this paper, we focus on troll detection via sentiment analysis and other user activity data on the Sina Weibo platform. We implement techniques for Chinese sentence segmentation, word embedding, and sentiment score calculation. In recent years, troll detection and sentiment analysis have been studied, but we are not aware of previous research that considers troll detection based on sentiment analysis. We employ the resulting techniques to develop and test a sentiment analysis approach for troll detection, based on a variety of machine learning strategies. Experimental results are generated and analyzed. A Chrome extension is presented that implements our proposed technique, which enables real-time troll detection when a user browses Sina Weibo.

  Access Paper or Ask Questions

Aspect-Based Relational Sentiment Analysis Using a Stacked Neural Network Architecture

Sep 19, 2017
Soufian Jebbara, Philipp Cimiano

Sentiment analysis can be regarded as a relation extraction problem in which the sentiment of some opinion holder towards a certain aspect of a product, theme or event needs to be extracted. We present a novel neural architecture for sentiment analysis as a relation extraction problem that addresses this problem by dividing it into three subtasks: i) identification of aspect and opinion terms, ii) labeling of opinion terms with a sentiment, and iii) extraction of relations between opinion terms and aspect terms. For each subtask, we propose a neural network based component and combine all of them into a complete system for relational sentiment analysis. The component for aspect and opinion term extraction is a hybrid architecture consisting of a recurrent neural network stacked on top of a convolutional neural network. This approach outperforms a standard convolutional deep neural architecture as well as a recurrent network architecture and performs competitively compared to other methods on two datasets of annotated customer reviews. To extract sentiments for individual opinion terms, we propose a recurrent architecture in combination with word distance features and achieve promising results, outperforming a majority baseline by 18% accuracy and providing the first results for the USAGE dataset. Our relation extraction component outperforms the current state-of-the-art in aspect-opinion relation extraction by 15% F-Measure.

  Access Paper or Ask Questions

Gated Mechanism for Attention Based Multimodal Sentiment Analysis

Feb 21, 2020
Ayush Kumar, Jithendra Vepa

Multimodal sentiment analysis has recently gained popularity because of its relevance to social media posts, customer service calls and video blogs. In this paper, we address three aspects of multimodal sentiment analysis; 1. Cross modal interaction learning, i.e. how multiple modalities contribute to the sentiment, 2. Learning long-term dependencies in multimodal interactions and 3. Fusion of unimodal and cross modal cues. Out of these three, we find that learning cross modal interactions is beneficial for this problem. We perform experiments on two benchmark datasets, CMU Multimodal Opinion level Sentiment Intensity (CMU-MOSI) and CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) corpus. Our approach on both these tasks yields accuracies of 83.9% and 81.1% respectively, which is 1.6% and 1.34% absolute improvement over current state-of-the-art.

* Accepted to appear in ICASSP 2020 

  Access Paper or Ask Questions

Joint Sentiment/Topic Modeling on Text Data Using Boosted Restricted Boltzmann Machine

Nov 10, 2017
Masoud Fatemi, Mehran Safayani

Recently by the development of the Internet and the Web, different types of social media such as web blogs become an immense source of text data. Through the processing of these data, it is possible to discover practical information about different topics, individuals opinions and a thorough understanding of the society. Therefore, applying models which can automatically extract the subjective information from the documents would be efficient and helpful. Topic modeling methods, also sentiment analysis are the most raised topics in the natural language processing and text mining fields. In this paper a new structure for joint sentiment-topic modeling based on Restricted Boltzmann Machine (RBM) which is a type of neural networks is proposed. By modifying the structure of RBM as well as appending a layer which is analogous to sentiment of text data to it, we propose a generative structure for joint sentiment topic modeling based on neutral networks. The proposed method is supervised and trained by the Contrastive Divergence algorithm. The new attached layer in the proposed model is a layer with the multinomial probability distribution which can be used in text data sentiment classification or any other supervised application. The proposed model is compared with existing models in the experiments such as evaluating as a generative model, sentiment classification, information retrieval and the corresponding results demonstrate the efficiency of the method.

  Access Paper or Ask Questions