Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Hashtag Healthcare: From Tweets to Mental Health Journals Using Deep Transfer Learning

Aug 04, 2017
Benjamin Shickel, Martin Heesacker, Sherry Benton, Parisa Rashidi

As the popularity of social media platforms continues to rise, an ever-increasing amount of human communication and self- expression takes place online. Most recent research has focused on mining social media for public user opinion about external entities such as product reviews or sentiment towards political news. However, less attention has been paid to analyzing users' internalized thoughts and emotions from a mental health perspective. In this paper, we quantify the semantic difference between public Tweets and private mental health journals used in online cognitive behavioral therapy. We will use deep transfer learning techniques for analyzing the semantic gap between the two domains. We show that for the task of emotional valence prediction, social media can be successfully harnessed to create more accurate, robust, and personalized mental health models. Our results suggest that the semantic gap between public and private self-expression is small, and that utilizing the abundance of available social media is one way to overcome the small sample sizes of mental health data, which are commonly limited by availability and privacy concerns.

* Under review with Scientific Reports 

  Access Paper or Ask Questions

Parallelizing Word2Vec in Shared and Distributed Memory

Aug 08, 2016
Shihao Ji, Nadathur Satish, Sheng Li, Pradeep Dubey

Word2Vec is a widely used algorithm for extracting low-dimensional vector representations of words. It generated considerable excitement in the machine learning and natural language processing (NLP) communities recently due to its exceptional performance in many NLP applications such as named entity recognition, sentiment analysis, machine translation and question answering. State-of-the-art algorithms including those by Mikolov et al. have been parallelized for multi-core CPU architectures but are based on vector-vector operations that are memory-bandwidth intensive and do not efficiently use computational resources. In this paper, we improve reuse of various data structures in the algorithm through the use of minibatching, hence allowing us to express the problem using matrix multiply operations. We also explore different techniques to distribute word2vec computation across nodes in a compute cluster, and demonstrate good strong scalability up to 32 nodes. In combination, these techniques allow us to scale up the computation near linearly across cores and nodes, and process hundreds of millions of words per second, which is the fastest word2vec implementation to the best of our knowledge.

* Added more results 

  Access Paper or Ask Questions

N-gram-Based Low-Dimensional Representation for Document Classification

Apr 10, 2015
Rémi Lebret, Ronan Collobert

The bag-of-words (BOW) model is the common approach for classifying documents, where words are used as feature for training a classifier. This generally involves a huge number of features. Some techniques, such as Latent Semantic Analysis (LSA) or Latent Dirichlet Allocation (LDA), have been designed to summarize documents in a lower dimension with the least semantic information loss. Some semantic information is nevertheless always lost, since only words are considered. Instead, we aim at using information coming from n-grams to overcome this limitation, while remaining in a low-dimension space. Many approaches, such as the Skip-gram model, provide good word vector representations very quickly. We propose to average these representations to obtain representations of n-grams. All n-grams are thus embedded in a same semantic space. A K-means clustering can then group them into semantic concepts. The number of features is therefore dramatically reduced and documents can be represented as bag of semantic concepts. We show that this model outperforms LSA and LDA on a sentiment classification task, and yields similar results than a traditional BOW-model with far less features.

* Accepted as a workshop contribution at ICLR 2015 

  Access Paper or Ask Questions

Measuring Software Quality in Use: State-of-the-Art and Research Challenges

Mar 24, 2015
Issa Atoum, Chih How Bong

Software quality in use comprises quality from the user's perspective. It has gained its importance in e-government applications, mobile-based applications, embedded systems, and even business process development. User's decisions on software acquisitions are often ad hoc or based on preference due to difficulty in quantitatively measuring software quality in use. But, why is quality-in-use measurement difficult? Although there are many software quality models, to the authors' knowledge no works survey the challenges related to software quality-in-use measurement. This article has two main contributions: 1) it identifies and explains major issues and challenges in measuring software quality in use in the context of the ISO SQuaRE series and related software quality models and highlights open research areas; and 2) it sheds light on a research direction that can be used to predict software quality in use. In short, the quality-in-use measurement issues are related to the complexity of the current standard models and the limitations and incompleteness of the customized software quality models. A sentiment analysis of software reviews is proposed to deal with these issues.

* ASQ.Software Quality Professional, 17(2), 2015 
* 4 Figures 

  Access Paper or Ask Questions

Towards Resolving Software Quality-in-Use Measurement Challenges

Jan 30, 2015
Issa Atoum, Chih How Bong, Narayanan Kulathuramaiyer

Software quality-in-use comprehends the quality from user's perspectives. It has gained its importance in e-learning applications, mobile service based applications and project management tools. User's decisions on software acquisitions are often ad hoc or based on preference due to difficulty in quantitatively measure software quality-in-use. However, why quality-in-use measurement is difficult? Although there are many software quality models to our knowledge, no works surveys the challenges related to software quality-in-use measurement. This paper has two main contributions; 1) presents major issues and challenges in measuring software quality-in-use in the context of the ISO SQuaRE series and related software quality models, 2) Presents a novel framework that can be used to predict software quality-in-use, and 3) presents preliminary results of quality-in-use topic prediction. Concisely, the issues are related to the complexity of the current standard models and the limitations and incompleteness of the customized software quality models. The proposed framework employs sentiment analysis techniques to predict software quality-in-use.

* 9 pages, 4 figures, Journal of Emerging Trends in Computing and Information Sciences, Vol. 5, No. 11, November 2014 

  Access Paper or Ask Questions

Locally Aggregated Feature Attribution on Natural Language Model Understanding

Apr 26, 2022
Sheng Zhang, Jin Wang, Haitao Jiang, Rui Song

With the growing popularity of deep-learning models, model understanding becomes more important. Much effort has been devoted to demystify deep neural networks for better interpretability. Some feature attribution methods have shown promising results in computer vision, especially the gradient-based methods where effectively smoothing the gradients with reference data is key to a robust and faithful result. However, direct application of these gradient-based methods to NLP tasks is not trivial due to the fact that the input consists of discrete tokens and the "reference" tokens are not explicitly defined. In this work, we propose Locally Aggregated Feature Attribution (LAFA), a novel gradient-based feature attribution method for NLP models. Instead of relying on obscure reference tokens, it smooths gradients by aggregating similar reference texts derived from language model embeddings. For evaluation purpose, we also design experiments on different NLP tasks including Entity Recognition and Sentiment Analysis on public datasets as well as key feature detection on a constructed Amazon catalogue dataset. The superior performance of the proposed method is demonstrated through experiments.

* NAACL 2022 

  Access Paper or Ask Questions

Practical Benefits of Feature Feedback Under Distribution Shift

Oct 14, 2021
Anurag Katakkar, Weiqin Wang, Clay H. Yoo, Zachary C. Lipton, Divyansh Kaushik

In attempts to develop sample-efficient algorithms, researcher have explored myriad mechanisms for collecting and exploiting feature feedback, auxiliary annotations provided for training (but not test) instances that highlight salient evidence. Examples include bounding boxes around objects and salient spans in text. Despite its intuitive appeal, feature feedback has not delivered significant gains in practical problems as assessed on iid holdout sets. However, recent works on counterfactually augmented data suggest an alternative benefit of supplemental annotations: lessening sensitivity to spurious patterns and consequently delivering gains in out-of-domain evaluations. Inspired by these findings, we hypothesize that while the numerous existing methods for incorporating feature feedback have delivered negligible in-sample gains, they may nevertheless generalize better out-of-domain. In experiments addressing sentiment analysis, we show that feature feedback methods perform significantly better on various natural out-of-domain datasets even absent differences on in-domain evaluation. By contrast, on natural language inference tasks, performance remains comparable. Finally, we compare those tasks where feature feedback does (and does not) help.

  Access Paper or Ask Questions

MINIMAL: Mining Models for Data Free Universal Adversarial Triggers

Sep 25, 2021
Swapnil Parekh, Yaman Singla Kumar, Somesh Singh, Changyou Chen, Balaji Krishnamurthy, Rajiv Ratn Shah

It is well known that natural language models are vulnerable to adversarial attacks, which are mostly input-specific in nature. Recently, it has been shown that there also exist input-agnostic attacks in NLP models, called universal adversarial triggers. However, existing methods to craft universal triggers are data intensive. They require large amounts of data samples to generate adversarial triggers, which are typically inaccessible by attackers. For instance, previous works take 3000 data samples per class for the SNLI dataset to generate adversarial triggers. In this paper, we present a novel data-free approach, MINIMAL, to mine input-agnostic adversarial triggers from models. Using the triggers produced with our data-free algorithm, we reduce the accuracy of Stanford Sentiment Treebank's positive class from 93.6% to 9.6%. Similarly, for the Stanford Natural Language Inference (SNLI), our single-word trigger reduces the accuracy of the entailment class from 90.95% to less than 0.6\%. Despite being completely data-free, we get equivalent accuracy drops as data-dependent methods.

  Access Paper or Ask Questions

STraTA: Self-Training with Task Augmentation for Better Few-shot Learning

Sep 13, 2021
Tu Vu, Minh-Thang Luong, Quoc V. Le, Grady Simon, Mohit Iyyer

Despite their recent successes in tackling many NLP tasks, large-scale pre-trained language models do not perform as well in few-shot settings where only a handful of training examples are available. To address this shortcoming, we propose STraTA, which stands for Self-Training with Task Augmentation, an approach that builds on two key ideas for effective leverage of unlabeled data. First, STraTA uses task augmentation, a novel technique that synthesizes a large amount of data for auxiliary-task fine-tuning from target-task unlabeled texts. Second, STraTA performs self-training by further fine-tuning the strong base model created by task augmentation on a broad distribution of pseudo-labeled data. Our experiments demonstrate that STraTA can substantially improve sample efficiency across 12 few-shot benchmarks. Remarkably, on the SST-2 sentiment dataset, STraTA, with only 8 training examples per class, achieves comparable results to standard fine-tuning with 67K training examples. Our analyses reveal that task augmentation and self-training are both complementary and independently effective.

* Accepted as a conference paper at EMNLP 2021, 17 pages, 3 figures, 11 tables 

  Access Paper or Ask Questions

On Guaranteed Optimal Robust Explanations for NLP Models

May 14, 2021
Emanuele La Malfa, Agnieszka Zbrzezny, Rhiannon Michelmore, Nicola Paoletti, Marta Kwiatkowska

We build on abduction-based explanations for ma-chine learning and develop a method for computing local explanations for neural network models in natural language processing (NLP). Our explanations comprise a subset of the words of the in-put text that satisfies two key features: optimality w.r.t. a user-defined cost function, such as the length of explanation, and robustness, in that they ensure prediction invariance for any bounded perturbation in the embedding space of the left out words. We present two solution algorithms, respectively based on implicit hitting sets and maximum universal subsets, introducing a number of algorithmic improvements to speed up convergence of hard instances. We show how our method can be con-figured with different perturbation sets in the em-bedded space and used to detect bias in predictions by enforcing include/exclude constraints on biased terms, as well as to enhance existing heuristic-based NLP explanation frameworks such as Anchors. We evaluate our framework on three widely used sentiment analysis tasks and texts of up to100words from SST, Twitter and IMDB datasets,demonstrating the effectiveness of the derived explanations.

* IJCAI 2021 
* 13 pages (8+5 Appendix). Accepted as long-paper at IJCAI 2021 

  Access Paper or Ask Questions