Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

CogAlign: Learning to Align Textual Neural Representations to Cognitive Language Processing Signals

Jun 22, 2021
Yuqi Ren, Deyi Xiong

Most previous studies integrate cognitive language processing signals (e.g., eye-tracking or EEG data) into neural models of natural language processing (NLP) just by directly concatenating word embeddings with cognitive features, ignoring the gap between the two modalities (i.e., textual vs. cognitive) and noise in cognitive features. In this paper, we propose a CogAlign approach to these issues, which learns to align textual neural representations to cognitive features. In CogAlign, we use a shared encoder equipped with a modality discriminator to alternatively encode textual and cognitive inputs to capture their differences and commonalities. Additionally, a text-aware attention mechanism is proposed to detect task-related information and to avoid using noise in cognitive features. Experimental results on three NLP tasks, namely named entity recognition, sentiment analysis and relation extraction, show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets. Moreover, our model is able to transfer cognitive information to other datasets that do not have any cognitive processing signals.

  Access Paper or Ask Questions

How COVID-19 Have Changed Crowdfunding: Evidence From GoFundMe

Jun 18, 2021
Junda Wang, Xupin Zhang, Jiebo Luo

While the long-term effects of COVID-19 are yet to be determined, its immediate impact on crowdfunding is nonetheless significant. This study takes a computational approach to more deeply comprehend this change. Using a unique data set of all the campaigns published over the past two years on GoFundMe, we explore the factors that have led to the successful funding of a crowdfunding project. In particular, we study a corpus of crowdfunded projects, analyzing cover images and other variables commonly present on crowdfunding sites. Furthermore, we construct a classifier and a regression model to assess the significance of features based on XGBoost. In addition, we employ counterfactual analysis to investigate the causality between features and the success of crowdfunding. More importantly, sentiment analysis and the paired sample t-test are performed to examine the differences in crowdfunding campaigns before and after the COVID-19 outbreak that started in March 2020. First, we note that there is significant racial disparity in crowdfunding success. Second, we find that sad emotion expressed through the campaign's description became significant after the COVID-19 outbreak. Considering all these factors, our findings shed light on the impact of COVID-19 on crowdfunding campaigns.

* 8 pages, 4 figures 

  Access Paper or Ask Questions

Distributed Word Representation in Tsetlin Machine

Apr 14, 2021
Rohan Kumar Yadav, Lei Jiao, Ole-Christoffer Granmo, Morten Goodwin

Tsetlin Machine (TM) is an interpretable pattern recognition algorithm based on propositional logic. The algorithm has demonstrated competitive performance in many Natural Language Processing (NLP) tasks, including sentiment analysis, text classification, and Word Sense Disambiguation (WSD). To obtain human-level interpretability, legacy TM employs Boolean input features such as bag-of-words (BOW). However, the BOW representation makes it difficult to use any pre-trained information, for instance, word2vec and GloVe word representations. This restriction has constrained the performance of TM compared to deep neural networks (DNNs) in NLP. To reduce the performance gap, in this paper, we propose a novel way of using pre-trained word representations for TM. The approach significantly enhances the TM performance and maintains interpretability at the same time. We achieve this by extracting semantically related words from pre-trained word representations as input features to the TM. Our experiments show that the accuracy of the proposed approach is significantly higher than the previous BOW-based TM, reaching the level of DNN-based models.

* 9 pages, 13 figures, and 4 tables 

  Access Paper or Ask Questions

Revisiting LSTM Networks for Semi-Supervised Text Classification via Mixed Objective Function

Sep 08, 2020
Devendra Singh Sachan, Manzil Zaheer, Ruslan Salakhutdinov

In this paper, we study bidirectional LSTM network for the task of text classification using both supervised and semi-supervised approaches. Several prior works have suggested that either complex pretraining schemes using unsupervised methods such as language modeling (Dai and Le 2015; Miyato, Dai, and Goodfellow 2016) or complicated models (Johnson and Zhang 2017) are necessary to achieve a high classification accuracy. However, we develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results compared with more complex approaches. Furthermore, in addition to cross-entropy loss, by using a combination of entropy minimization, adversarial, and virtual adversarial losses for both labeled and unlabeled data, we report state-of-the-art results for text classification task on several benchmark datasets. In particular, on the ACL-IMDB sentiment analysis and AG-News topic classification datasets, our method outperforms current approaches by a substantial margin. We also show the generality of the mixed objective function by improving the performance on relation extraction task.

* Published at AAAI 2019 

  Access Paper or Ask Questions

Recovering Geometric Information with Learned Texture Perturbations

Jan 20, 2020
Jane Wu, Yongxu Jin, Zhenglin Geng, Hui Zhou, Ronald Fedkiw

Regularization is used to avoid overfitting when training a neural network; unfortunately, this reduces the attainable level of detail hindering the ability to capture high-frequency information present in the training data. Even though various approaches may be used to re-introduce high-frequency detail, it typically does not match the training data and is often not time coherent. In the case of network inferred cloth, these sentiments manifest themselves via either a lack of detailed wrinkles or unnaturally appearing and/or time incoherent surrogate wrinkles. Thus, we propose a general strategy whereby high-frequency information is procedurally embedded into low-frequency data so that when the latter is smeared out by the network the former still retains its high-frequency detail. We illustrate this approach by learning texture coordinates which when smeared do not in turn smear out the high-frequency detail in the texture itself but merely smoothly distort it. Notably, we prescribe perturbed texture coordinates that are subsequently used to correct the over-smoothed appearance of inferred cloth, and correcting the appearance from multiple camera views naturally recovers lost geometric information.

  Access Paper or Ask Questions

DP-LSTM: Differential Privacy-inspired LSTM for Stock Prediction Using Financial News

Dec 20, 2019
Xinyi Li, Yinchuan Li, Hongyang Yang, Liuqing Yang, Xiao-Yang Liu

Stock price prediction is important for value investments in the stock market. In particular, short-term prediction that exploits financial news articles is promising in recent years. In this paper, we propose a novel deep neural network DP-LSTM for stock price prediction, which incorporates the news articles as hidden information and integrates difference news sources through the differential privacy mechanism. First, based on the autoregressive moving average model (ARMA), a sentiment-ARMA is formulated by taking into consideration the information of financial news articles in the model. Then, an LSTM-based deep neural network is designed, which consists of three components: LSTM, VADER model and differential privacy (DP) mechanism. The proposed DP-LSTM scheme can reduce prediction errors and increase the robustness. Extensive experiments on S&P 500 stocks show that (i) the proposed DP-LSTM achieves 0.32% improvement in mean MPA of prediction result, and (ii) for the prediction of the market index S&P 500, we achieve up to 65.79% improvement in MSE.

* arXiv admin note: text overlap with arXiv:1908.01112 

  Access Paper or Ask Questions

RNN Architecture Learning with Sparse Regularization

Sep 06, 2019
Jesse Dodge, Roy Schwartz, Hao Peng, Noah A. Smith

Neural models for NLP typically use large numbers of parameters to reach state-of-the-art performance, which can lead to excessive memory usage and increased runtime. We present a structure learning method for learning sparse, parameter-efficient NLP models. Our method applies group lasso to rational RNNs (Peng et al., 2018), a family of models that is closely connected to weighted finite-state automata (WFSAs). We take advantage of rational RNNs' natural grouping of the weights, so the group lasso penalty directly removes WFSA states, substantially reducing the number of parameters in the model. Our experiments on a number of sentiment analysis datasets, using both GloVe and BERT embeddings, show that our approach learns neural structures which have fewer parameters without sacrificing performance relative to parameter-rich baselines. Our method also highlights the interpretable properties of rational RNNs. We show that sparsifying such models makes them easier to visualize, and we present models that rely exclusively on as few as three WFSAs after pruning more than 90% of the weights. We publicly release our code.

  Access Paper or Ask Questions

Certified Robustness to Adversarial Word Substitutions

Sep 03, 2019
Robin Jia, Aditi Raghunathan, Kerem Göksel, Percy Liang

State-of-the-art NLP models can often be fooled by adversaries that apply seemingly innocuous label-preserving transformations (e.g., paraphrasing) to input text. The number of possible transformations scales exponentially with text length, so data augmentation cannot cover all transformations of an input. This paper considers one exponentially large family of label-preserving transformations, in which every word in the input can be replaced with a similar word. We train the first models that are provably robust to all word substitutions in this family. Our training procedure uses Interval Bound Propagation (IBP) to minimize an upper bound on the worst-case loss that any combination of word substitutions can induce. To evaluate models' robustness to these transformations, we measure accuracy on adversarially chosen word substitutions applied to test examples. Our IBP-trained models attain $75\%$ adversarial accuracy on both sentiment analysis on IMDB and natural language inference on SNLI. In comparison, on IMDB, models trained normally and ones trained with data augmentation achieve adversarial accuracy of only $8\%$ and $35\%$, respectively.

* EMNLP 2019 

  Access Paper or Ask Questions

StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding

Aug 16, 2019
Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao, Liwei Peng, Luo Si

Recently, the pre-trained language model, BERT, has attracted a lot of attention in natural language understanding (NLU), and achieved state-of-the-art accuracy in various NLU tasks, such as sentiment classification, natural language inference, semantic textual similarity and question answering. Inspired by the linearization exploration work of Elman, we extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. As a result, the new model is adapted to different levels of language understanding required by downstream tasks. The StructBERT with structural pre-training gives surprisingly good empirical results on a variety of downstream tasks, including pushing the state-of-the-art on the GLUE benchmark to 84.5 (with Top 1 achievement on the Leaderboard at the time of paper submission), the F1 score on SQuAD v1.1 question answering to 93.0, the accuracy on SNLI to 91.7.

* 10 Pages 

  Access Paper or Ask Questions