Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Identifying Purpose Behind Electoral Tweets

Nov 05, 2013
Saif M. Mohammad, Svetlana Kiritchenko, Joel Martin

Tweets pertaining to a single event, such as a national election, can number in the hundreds of millions. Automatically analyzing them is beneficial in many downstream natural language applications such as question answering and summarization. In this paper, we propose a new task: identifying the purpose behind electoral tweets--why do people post election-oriented tweets? We show that identifying purpose is correlated with the related phenomenon of sentiment and emotion detection, but yet significantly different. Detecting purpose has a number of applications including detecting the mood of the electorate, estimating the popularity of policies, identifying key issues of contention, and predicting the course of events. We create a large dataset of electoral tweets and annotate a few thousand tweets for purpose. We develop a system that automatically classifies electoral tweets as per their purpose, obtaining an accuracy of 43.56% on an 11-class task and an accuracy of 73.91% on a 3-class task (both accuracies well above the most-frequent-class baseline). Finally, we show that resources developed for emotion detection are also helpful for detecting purpose.

* In Proceedings of the KDD Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM-2013), August 2013, Chicago, USA 

  Access Paper or Ask Questions

Training Restricted Boltzmann Machines on Word Observations

Jul 05, 2012
George E. Dahl, Ryan P. Adams, Hugo Larochelle

The restricted Boltzmann machine (RBM) is a flexible tool for modeling complex data, however there have been significant computational difficulties in using RBMs to model high-dimensional multinomial observations. In natural language processing applications, words are naturally modeled by K-ary discrete distributions, where K is determined by the vocabulary size and can easily be in the hundreds of thousands. The conventional approach to training RBMs on word observations is limited because it requires sampling the states of K-way softmax visible units during block Gibbs updates, an operation that takes time linear in K. In this work, we address this issue by employing a more general class of Markov chain Monte Carlo operators on the visible units, yielding updates with computational complexity independent of K. We demonstrate the success of our approach by training RBMs on hundreds of millions of word n-grams using larger vocabularies than previously feasible and using the learned features to improve performance on chunking and sentiment classification tasks, achieving state-of-the-art results on the latter.

  Access Paper or Ask Questions

Latent Aspect Detection from Online Unsolicited Customer Reviews

Apr 14, 2022
Mohammad Forouhesh, Arash Mansouri, Hossein Fani

Within the context of review analytics, aspects are the features of products and services at which customers target their opinions and sentiments. Aspect detection helps product owners and service providers to identify shortcomings and prioritize customers' needs, and hence, maintain revenues and mitigate customer churn. Existing methods focus on detecting the surface form of an aspect by training supervised learning methods that fall short when aspects are latent in reviews. In this paper, we propose an unsupervised method to extract latent occurrences of aspects. Specifically, we assume that a customer undergoes a two-stage hypothetical generative process when writing a review: (1) deciding on an aspect amongst the set of aspects available for the product or service, and (2) writing the opinion words that are more interrelated to the chosen aspect from the set of all words available in a language. We employ latent Dirichlet allocation to learn the latent aspects distributions for generating the reviews. Experimental results on benchmark datasets show that our proposed method is able to improve the state of the art when the aspects are latent with no surface form in reviews.

* 6 pages, 2 figures, 2 tables 

  Access Paper or Ask Questions

PnPOOD : Out-Of-Distribution Detection for Text Classification via Plug andPlay Data Augmentation

Oct 31, 2021
Mrinal Rawat, Ramya Hebbalaguppe, Lovekesh Vig

While Out-of-distribution (OOD) detection has been well explored in computer vision, there have been relatively few prior attempts in OOD detection for NLP classification. In this paper we argue that these prior attempts do not fully address the OOD problem and may suffer from data leakage and poor calibration of the resulting models. We present PnPOOD, a data augmentation technique to perform OOD detection via out-of-domain sample generation using the recently proposed Plug and Play Language Model (Dathathri et al., 2020). Our method generates high quality discriminative samples close to the class boundaries, resulting in accurate OOD detection at test time. We demonstrate that our model outperforms prior models on OOD sample detection, and exhibits lower calibration error on the 20 newsgroup text and Stanford Sentiment Treebank dataset (Lang, 1995; Socheret al., 2013). We further highlight an important data leakage issue with datasets used in prior attempts at OOD detection, and share results on a new dataset for OOD detection that does not suffer from the same problem.

  Access Paper or Ask Questions

DOCTOR: A Simple Method for Detecting Misclassification Errors

Jun 04, 2021
Federica Granese, Marco Romanelli, Daniele Gorla, Catuscia Palamidessi, Pablo Piantanida

Deep neural networks (DNNs) have shown to perform very well on large scale object recognition problems and lead to widespread use for real-world applications, including situations where DNN are implemented as "black boxes". A promising approach to secure their use is to accept decisions that are likely to be correct while discarding the others. In this work, we propose DOCTOR, a simple method that aims to identify whether the prediction of a DNN classifier should (or should not) be trusted so that, consequently, it would be possible to accept it or to reject it. Two scenarios are investigated: Totally Black Box (TBB) where only the soft-predictions are available and Partially Black Box (PBB) where gradient-propagation to perform input pre-processing is allowed. Empirically, we show that DOCTOR outperforms all state-of-the-art methods on various well-known images and sentiment analysis datasets. In particular, we observe a reduction of up to $4\%$ of the false rejection rate (FRR) in the PBB scenario. DOCTOR can be applied to any pre-trained model, it does not require prior information about the underlying dataset and is as simple as the simplest available methods in the literature.

  Access Paper or Ask Questions

Decoding EEG Brain Activity for Multi-Modal Natural Language Processing

Feb 17, 2021
Nora Hollenstein, Cedric Renggli, Benjamin Glaus, Maria Barrett, Marius Troendle, Nicolas Langer, Ce Zhang

Until recently, human behavioral data from reading has mainly been of interest to researchers to understand human cognition. However, these human language processing signals can also be beneficial in machine learning-based natural language processing tasks. Using EEG brain activity to this purpose is largely unexplored as of yet. In this paper, we present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks, with a special focus on which features of the signal are most beneficial. We present a multi-modal machine learning architecture that learns jointly from textual input as well as from EEG features. We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal. Moreover, for a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines. For more complex tasks such as relation detection, further research is needed. Finally, EEG data shows to be particularly promising when limited training data is available.

  Access Paper or Ask Questions

An Algorithm for Routing Capsules in All Domains

Dec 15, 2019
Franz A. Heinsen

Building on recent work on capsule networks, we propose a new, general-purpose form of "routing by agreement" that activates output capsules in a layer as a function of their net benefit to use and net cost to ignore input capsules from earlier layers. To illustrate the usefulness of our routing algorithm, we present two capsule networks that apply it in different domains: vision and language. The first network achieves new state-of-the-art accuracy of 99.1% on the smallNORB visual recognition task with fewer parameters and an order of magnitude less training than previous capsule models, and we find evidence that it learns to perform a form of "reverse graphics." The second network achieves new state-of-the-art accuracies on the root sentences of the Stanford Sentiment Treebank: 58.5% on fine-grained and 95.6% on binary labels with a single-task model that routes frozen embeddings from a pretrained transformer as capsules. In both domains, we train with the same regime. Code is available at along with replication instructions.

  Access Paper or Ask Questions

Fine-Tuning Language Models from Human Preferences

Sep 18, 2019
Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul Christiano, Geoffrey Irving

Reward learning enables the application of reinforcement learning (RL) to tasks where reward is defined by human judgment, building a model of reward by asking humans questions. Most work on reward learning has used simulated environments, but complex information about values is often expressed in natural language, and we believe reward learning for language is a key to making RL practical and safe for real-world tasks. In this paper, we build on advances in generative pretraining of language models to apply reward learning to four natural language tasks: continuing text with positive sentiment or physically descriptive language, and summarization tasks on the TL;DR and CNN/Daily Mail datasets. For stylistic continuation we achieve good results with only 5,000 comparisons evaluated by humans. For summarization, models trained with 60,000 comparisons copy whole sentences from the input but skip irrelevant preamble; this leads to reasonable ROUGE scores and very good performance according to our human labelers, but may be exploiting the fact that labelers rely on simple heuristics.

  Access Paper or Ask Questions