Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

#Coronavirus or #Chinesevirus?!: Understanding the negative sentiment reflected in Tweets with racist hashtags across the development of COVID-19

May 17, 2020
Xin Pei, Deval Mehta

Situated in the global outbreak of COVID-19, our study enriches the discussion concerning the emergent racism and xenophobia on social media. With big data extracted from Twitter, we focus on the analysis of negative sentiment reflected in tweets marked with racist hashtags, as racism and xenophobia are more likely to be delivered via the negative sentiment. Especially, we propose a stage-based approach to capture how the negative sentiment changes along with the three development stages of COVID-19, under which it transformed from a domestic epidemic into an international public health emergency and later, into the global pandemic. At each stage, sentiment analysis enables us to recognize the negative sentiment from tweets with racist hashtags, and keyword extraction allows for the discovery of themes in the expression of negative sentiment by these tweets. Under this public health crisis of human beings, this stage-based approach enables us to provide policy suggestions for the enactment of stage-specific intervention strategies to combat racism and xenophobia on social media in a more effective way.


  Access Paper or Ask Questions

Cross-Lingual Sentiment Analysis Without (Good) Translation

Oct 24, 2017
Mohamed Abdalla, Graeme Hirst

Current approaches to cross-lingual sentiment analysis try to leverage the wealth of labeled English data using bilingual lexicons, bilingual vector space embeddings, or machine translation systems. Here we show that it is possible to use a single linear transformation, with as few as 2000 word pairs, to capture fine-grained sentiment relationships between words in a cross-lingual setting. We apply these cross-lingual sentiment models to a diverse set of tasks to demonstrate their functionality in a non-English context. By effectively leveraging English sentiment knowledge without the need for accurate translation, we can analyze and extract features from other languages with scarce data at a very low cost, thus making sentiment and related analyses for many languages inexpensive.

* 10 pages, 4 figures 

  Access Paper or Ask Questions

Evaluating the Usefulness of Sentiment Information for Focused Crawlers

Sep 27, 2013
Tianjun Fu, Ahmed Abbasi, Daniel Zeng, Hsinchun Chen

Despite the prevalence of sentiment-related content on the Web, there has been limited work on focused crawlers capable of effectively collecting such content. In this study, we evaluated the efficacy of using sentiment-related information for enhanced focused crawling of opinion-rich web content regarding a particular topic. We also assessed the impact of using sentiment-labeled web graphs to further improve collection accuracy. Experimental results on a large test bed encompassing over half a million web pages revealed that focused crawlers utilizing sentiment information as well as sentiment-labeled web graphs are capable of gathering more holistic collections of opinion-related content regarding a particular topic. The results have important implications for business and marketing intelligence gathering efforts in the Web 2.0 era.

* Fu, T., Abbasi, A., Zeng, D., and Chen, H. "Evaluating the Usefulness of Sentiment Information for Focused Crawlers," In Proceedings of the 20th Annual Workshop on Information Technologies and Systems, St. Louis, MO, December 11-12, 2010 

  Access Paper or Ask Questions

Sentiment analysis for Arabic language: A brief survey of approaches and techniques

Sep 15, 2018
Mo'ath Alrefai, Hossam Faris, Ibrahim Aljarah

With the emergence of Web 2.0 technology and the expansion of on-line social networks, current Internet users have the ability to add their reviews, ratings and opinions on social media and on commercial and news web sites. Sentiment analysis aims to classify these reviews reviews in an automatic way. In the literature, there are numerous approaches proposed for automatic sentiment analysis for different language contexts. Each language has its own properties that makes the sentiment analysis more challenging. In this regard, this work presents a comprehensive survey of existing Arabic sentiment analysis studies, and covers the various approaches and techniques proposed in the literature. Moreover, we highlight the main difficulties and challenges of Arabic sentiment analysis, and the proposed techniques in literature to overcome these barriers.


  Access Paper or Ask Questions

News-based Business Sentiment and its Properties as an Economic Index

Oct 20, 2021
Kazuhiro Seki, Yusuke Ikuta, Yoichi Matsubayashi

This paper presents an approach to measuring business sentiment based on textual data. Business sentiment has been measured by traditional surveys, which are costly and time-consuming to conduct. To address the issues, we take advantage of daily newspaper articles and adopt a self-attention-based model to define a business sentiment index, named S-APIR, where outlier detection models are investigated to properly handle various genres of news articles. Moreover, we propose a simple approach to temporally analyzing how much any given event contributed to the predicted business sentiment index. To demonstrate the validity of the proposed approach, an extensive analysis is carried out on 12 years' worth of newspaper articles. The analysis shows that the S-APIR index is strongly and positively correlated with established survey-based index (up to correlation coefficient r=0.937) and that the outlier detection is effective especially for a general newspaper. Also, S-APIR is compared with a variety of economic indices, revealing the properties of S-APIR that it reflects the trend of the macroeconomy as well as the economic outlook and sentiment of economic agents. Moreover, to illustrate how S-APIR could benefit economists and policymakers, several events are analyzed with respect to their impacts on business sentiment over time.

* 40 pages, to be published in Information Processing and Management 

  Access Paper or Ask Questions

A Unified Model for Opinion Target Extraction and Target Sentiment Prediction

Nov 13, 2018
Xin Li, Lidong Bing, Piji Li, Wai Lam

Target-based sentiment analysis involves opinion target extraction and target sentiment classification. However, most of the existing works usually studied one of these two sub-tasks alone, which hinders their practical use. This paper aims to solve the complete task of target-based sentiment analysis in an end-to-end fashion, and presents a novel unified model which applies a unified tagging scheme. Our framework involves two stacked recurrent neural networks: The upper one predicts the unified tags to produce the final output results of the primary target-based sentiment analysis; The lower one performs an auxiliary target boundary prediction aiming at guiding the upper network to improve the performance of the primary task. To explore the inter-task dependency, we propose to explicitly model the constrained transitions from target boundaries to target sentiment polarities. We also propose to maintain the sentiment consistency within an opinion target via a gate mechanism which models the relation between the features for the current word and the previous word. We conduct extensive experiments on three benchmark datasets and our framework achieves consistently superior results.

* AAAI 2019 

  Access Paper or Ask Questions

Utterance-Based Audio Sentiment Analysis Learned by a Parallel Combination of CNN and LSTM

Nov 20, 2018
Ziqian Luo, Hua Xu, Feiyang Chen

Audio Sentiment Analysis is a popular research area which extends the conventional text-based sentiment analysis to depend on the effectiveness of acoustic features extracted from speech. However, current progress on audio sentiment analysis mainly focuses on extracting homogeneous acoustic features or doesn't fuse heterogeneous features effectively. In this paper, we propose an utterance-based deep neural network model, which has a parallel combination of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) based network, to obtain representative features termed Audio Sentiment Vector (ASV), that can maximally reflect sentiment information in an audio. Specifically, our model is trained by utterance-level labels and ASV can be extracted and fused creatively from two branches. In the CNN model branch, spectrum graphs produced by signals are fed as inputs while in the LSTM model branch, inputs include spectral features and cepstrum coefficient extracted from dependent utterances in an audio. Besides, Bidirectional Long Short-Term Memory (BiLSTM) with attention mechanism is used for feature fusion. Extensive experiments have been conducted to show our model can recognize audio sentiment precisely and quickly, and demonstrate our ASV are better than traditional acoustic features or vectors extracted from other deep learning models. Furthermore, experimental results indicate that the proposed model outperforms the state-of-the-art approach by 9.33% on Multimodal Opinion-level Sentiment Intensity dataset (MOSI) dataset.

* 15 pages, 3 figures, journal 

  Access Paper or Ask Questions

Enhanced Aspect-Based Sentiment Analysis Models with Progressive Self-supervised Attention Learning

Mar 05, 2021
Jinsong Su, Jialong Tang, Hui Jiang, Ziyao Lu, Yubin Ge, Linfeng Song, Deyi Xiong, Le Sun, Jiebo Luo

In aspect-based sentiment analysis (ABSA), many neural models are equipped with an attention mechanism to quantify the contribution of each context word to sentiment prediction. However, such a mechanism suffers from one drawback: only a few frequent words with sentiment polarities are tended to be taken into consideration for final sentiment decision while abundant infrequent sentiment words are ignored by models. To deal with this issue, we propose a progressive self-supervised attention learning approach for attentional ABSA models. In this approach, we iteratively perform sentiment prediction on all training instances, and continually learn useful attention supervision information in the meantime. During training, at each iteration, context words with the highest impact on sentiment prediction, identified based on their attention weights or gradients, are extracted as words with active/misleading influence on the correct/incorrect prediction for each instance. Words extracted in this way are masked for subsequent iterations. To exploit these extracted words for refining ABSA models, we augment the conventional training objective with a regularization term that encourages ABSA models to not only take full advantage of the extracted active context words but also decrease the weights of those misleading words. We integrate the proposed approach into three state-of-the-art neural ABSA models. Experiment results and in-depth analyses show that our approach yields better attention results and significantly enhances the performance of all three models. We release the source code and trained models at https://github.com/DeepLearnXMU/PSSAttention.

* Artificial Intelligence 2021 
* 31 pages. arXiv admin note: text overlap with arXiv:1906.01213 

  Access Paper or Ask Questions

Sentiment analysis of twitter data

Dec 16, 2017
Hamid Bagheri, Md Johirul Islam

Social networks are the main resources to gather information about people's opinion and sentiments towards different topics as they spend hours daily on social media and share their opinion. In this technical paper, we show the application of sentimental analysis and how to connect to Twitter and run sentimental analysis queries. We run experiments on different queries from politics to humanity and show the interesting results. We realized that the neutral sentiments for tweets are significantly high which clearly shows the limitations of the current works.

* 5 pages 

  Access Paper or Ask Questions

Extractive and Abstractive Sentence Labelling of Sentiment-bearing Topics

Aug 29, 2021
Mohamad Hardyman Barawi, Chenghua Lin, Advaith Siddharthan, Yinbin Liu

This paper tackles the problem of automatically labelling sentiment-bearing topics with descriptive sentence labels. We propose two approaches to the problem, one extractive and the other abstractive. Both approaches rely on a novel mechanism to automatically learn the relevance of each sentence in a corpus to sentiment-bearing topics extracted from that corpus. The extractive approach uses a sentence ranking algorithm for label selection which for the first time jointly optimises topic--sentence relevance as well as aspect--sentiment co-coverage. The abstractive approach instead addresses aspect--sentiment co-coverage by using sentence fusion to generate a sentential label that includes relevant content from multiple sentences. To our knowledge, we are the first to study the problem of labelling sentiment-bearing topics. Our experimental results on three real-world datasets show that both the extractive and abstractive approaches outperform four strong baselines in terms of facilitating topic understanding and interpretation. In addition, when comparing extractive and abstractive labels, our evaluation shows that our best performing abstractive method is able to provide more topic information coverage in fewer words, at the cost of generating less grammatical labels than the extractive method. We conclude that abstractive methods can effectively synthesise the rich information contained in sentiment-bearing topics.


  Access Paper or Ask Questions

<<
15
16
17
18
19
20
21
22
23
24
25
26
27
>>