Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Phocus: Picking Valuable Research from a Sea of Citations

Jan 09, 2022
Xinrong Zhang, Zihou Ren, Xi Li, Shuqi Liu, Yunlong Deng, Yadi Xiao, Yuxing Han, Jiangtao Wen

The deluge of new papers has significantly blocked the development of academics, which is mainly caused by author-level and publication-level evaluation metrics that only focus on quantity. Those metrics have resulted in several severe problems that trouble scholars focusing on the important research direction for a long time and even promote an impetuous academic atmosphere. To solve those problems, we propose Phocus, a novel academic evaluation mechanism for authors and papers. Phocus analyzes the sentence containing a citation and its contexts to predict the sentiment towards the corresponding reference. Combining others factors, Phocus classifies citations coarsely, ranks all references within a paper, and utilizes the results of the classifier and the ranking model to get the local influential factor of a reference to the citing paper. The global influential factor of the reference to the citing paper is the product of the local influential factor and the total influential factor of the citing paper. Consequently, an author's academic influential factor is the sum of his contributions to each paper he co-authors.

  Access Paper or Ask Questions

RAP: Robustness-Aware Perturbations for Defending against Backdoor Attacks on NLP Models

Oct 15, 2021
Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, Xu Sun

Backdoor attacks, which maliciously control a well-trained model's outputs of the instances with specific triggers, are recently shown to be serious threats to the safety of reusing deep neural networks (DNNs). In this work, we propose an efficient online defense mechanism based on robustness-aware perturbations. Specifically, by analyzing the backdoor training process, we point out that there exists a big gap of robustness between poisoned and clean samples. Motivated by this observation, we construct a word-based robustness-aware perturbation to distinguish poisoned samples from clean samples to defend against the backdoor attacks on natural language processing (NLP) models. Moreover, we give a theoretical analysis about the feasibility of our robustness-aware perturbation-based defense method. Experimental results on sentiment analysis and toxic detection tasks show that our method achieves better defending performance and much lower computational costs than existing online defense methods. Our code is available at

* EMNLP 2021 (main conference), long paper, camera-ready version 

  Access Paper or Ask Questions

Opinion Prediction with User Fingerprinting

Jul 31, 2021
Kishore Tumarada, Yifan Zhang, Dr. Fan Yang, Dr. Eduard Dragut, Dr. Omprakash Gnawali, Dr. Arjun Mukherjee

Opinion prediction is an emerging research area with diverse real-world applications, such as market research and situational awareness. We identify two lines of approaches to the problem of opinion prediction. One uses topic-based sentiment analysis with time-series modeling, while the other uses static embedding of text. The latter approaches seek user-specific solutions by generating user fingerprints. Such approaches are useful in predicting user's reactions to unseen content. In this work, we propose a novel dynamic fingerprinting method that leverages contextual embedding of user's comments conditioned on relevant user's reading history. We integrate BERT variants with a recurrent neural network to generate predictions. The results show up to 13\% improvement in micro F1-score compared to previous approaches. Experimental results show novel insights that were previously unknown such as better predictions for an increase in dynamic history length, the impact of the nature of the article on performance, thereby laying the foundation for further research.

* 9 pages, 6 figures, RANLP conference 2021 

  Access Paper or Ask Questions

Be Careful about Poisoned Word Embeddings: Exploring the Vulnerability of the Embedding Layers in NLP Models

Mar 29, 2021
Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren, Xu Sun, Bin He

Recent studies have revealed a security threat to natural language processing (NLP) models, called the Backdoor Attack. Victim models can maintain competitive performance on clean samples while behaving abnormally on samples with a specific trigger word inserted. Previous backdoor attacking methods usually assume that attackers have a certain degree of data knowledge, either the dataset which users would use or proxy datasets for a similar task, for implementing the data poisoning procedure. However, in this paper, we find that it is possible to hack the model in a data-free way by modifying one single word embedding vector, with almost no accuracy sacrificed on clean samples. Experimental results on sentiment analysis and sentence-pair classification tasks show that our method is more efficient and stealthier. We hope this work can raise the awareness of such a critical security risk hidden in the embedding layers of NLP models. Our code is available at

* NAACL-HLT 2021, Long Paper 

  Access Paper or Ask Questions

TI-Capsule: Capsule Network for Stock Exchange Prediction

Feb 15, 2021
Ramin Mousa, Sara Nazari, Ali Karhe Abadi, Reza Shoukhcheshm, Mohammad Niknam Pirzadeh, Leila Safari

Today, the use of social networking data has attracted a lot of academic and commercial attention in predicting the stock market. In most studies in this area, the sentiment analysis of the content of user posts on social networks is used to predict market fluctuations. Predicting stock marketing is challenging because of the variables involved. In the short run, the market behaves like a voting machine, but in the long run, it acts like a weighing machine. The purpose of this study is to predict EUR/USD stock behavior using Capsule Network on finance texts and Candlestick images. One of the most important features of Capsule Network is the maintenance of features in a vector, which also takes into account the space between features. The proposed model, TI-Capsule (Text and Image information based Capsule Neural Network), is trained with both the text and image information simultaneously. Extensive experiments carried on the collected dataset have demonstrated the effectiveness of TI-Capsule in solving the stock exchange prediction problem with 91% accuracy.

  Access Paper or Ask Questions

Controlling the Interaction Between Generation and Inference in Semi-Supervised Variational Autoencoders Using Importance Weighting

Oct 14, 2020
Ghazi Felhi, Joseph Leroux, Djamé Seddah

Even though Variational Autoencoders (VAEs) are widely used for semi-supervised learning, the reason why they work remains unclear. In fact, the addition of the unsupervised objective is most often vaguely described as a regularization. The strength of this regularization is controlled by down-weighting the objective on the unlabeled part of the training set. Through an analysis of the objective of semi-supervised VAEs, we observe that they use the posterior of the learned generative model to guide the inference model in learning the partially observed latent variable. We show that given this observation, it is possible to gain finer control on the effect of the unsupervised objective on the training procedure. Using importance weighting, we derive two novel objectives that prioritize either one of the partially observed latent variable, or the unobserved latent variable. Experiments on the IMDB english sentiment analysis dataset and on the AG News topic classification dataset show the improvements brought by our prioritization mechanism and exhibit a behavior that is inline with our description of the inner working of Semi-Supervised VAEs.

  Access Paper or Ask Questions

Denoising Multi-Source Weak Supervision for Neural Text Classification

Oct 09, 2020
Wendi Ren, Yinghao Li, Hanting Su, David Kartchner, Cassie Mitchell, Chao Zhang

We study the problem of learning neural text classifiers without using any labeled data, but only easy-to-provide rules as multiple weak supervision sources. This problem is challenging because rule-induced weak labels are often noisy and incomplete. To address these two challenges, we design a label denoiser, which estimates the source reliability using a conditional soft attention mechanism and then reduces label noise by aggregating rule-annotated weak labels. The denoised pseudo labels then supervise a neural classifier to predicts soft labels for unmatched samples, which address the rule coverage issue. We evaluate our model on five benchmarks for sentiment, topic, and relation classifications. The results show that our model outperforms state-of-the-art weakly-supervised and semi-supervised methods consistently, and achieves comparable performance with fully-supervised methods even without any labeled data. Our code can be found at

* 16 pages, 7 figures 

  Access Paper or Ask Questions

Perturbed Masking: Parameter-free Probing for Analyzing and Interpreting BERT

Apr 30, 2020
Zhiyong Wu, Yun Chen, Ben Kao, Qun Liu

By introducing a small set of additional parameters, a probe learns to solve specific linguistic tasks (e.g., dependency parsing) in a supervised manner using feature representations (e.g., contextualized embeddings). The effectiveness of such probing tasks is taken as evidence that the pre-trained model encodes linguistic knowledge. However, this approach of evaluating a language model is undermined by the uncertainty of the amount of knowledge that is learned by the probe itself. Complementary to those works, we propose a parameter-free probing technique for analyzing pre-trained language models (e.g., BERT). Our method does not require direct supervision from the probing tasks, nor do we introduce additional parameters to the probing process. Our experiments on BERT show that syntactic trees recovered from BERT using our method are significantly better than linguistically-uninformed baselines. We further feed the empirically induced dependency structures into a downstream sentiment classification task and find its improvement compatible with or even superior to a human-designed dependency schema.

* Accepted to ACL2020 as a long paper 

  Access Paper or Ask Questions

Description Based Text Classification with Reinforcement Learning

Feb 08, 2020
Duo Chai, Wei Wu, Qinghong Han, Fei Wu, Jiwei Li

The task of text classification is usually divided into two stages: {\it text feature extraction} and {\it classification}. In this standard formalization categories are merely represented as indexes in the label vocabulary, and the model lacks for explicit instructions on what to classify. Inspired by the current trend of formalizing NLP problems as question answering tasks, we propose a new framework for text classification, in which each category label is associated with a category description. Descriptions are generated by hand-crafted templates or using abstractive/extractive models from reinforcement learning. The concatenation of the description and the text is fed to the classifier to decide whether or not the current label should be assigned to the text. The proposed strategy forces the model to attend to the most salient texts with respect to the label, which can be regarded as a hard version of attention, leading to better performances. We observe significant performance boosts over strong baselines on a wide range of text classification tasks including single-label classification, multi-label classification and multi-aspect sentiment analysis.

  Access Paper or Ask Questions