Language style transfer is the problem of migrating the content of a source sentence to a target style. In many of its applications, parallel training data are not available and source sentences to be transferred may have arbitrary and unknown styles. First, each sentence is encoded into its content and style latent representations. Then, by recombining the content with the target style, we decode a sentence aligned in the target domain. To adequately constrain the encoding and decoding functions, we couple them with two loss functions. The first is a style discrepancy loss, enforcing that the style representation accurately encodes the style information guided by the discrepancy between the sentence style and the target style. The second is a cycle consistency loss, which ensures that the transferred sentence should preserve the content of the original sentence disentangled from its style. We validate the effectiveness of our model in three tasks: sentiment modification of restaurant reviews, dialog response revision with a romantic style, and sentence rewriting with a Shakespearean style.
We explore the applicability of the causal analysis based on temporally shifted (lagged) Pearson correlation applied to diverse time series of different natures in context of the problem of financial market prediction. Theoretical discussion is followed by description of the practical approach for specific environment of time series data with diverse nature and sparsity, as applied for environments of financial markets. The data involves various financial metrics computable from raw market data such as real-time trades and snapshots of the limit order book as well as metrics determined upon social media news streams such as sentiment and different cognitive distortions. The approach is backed up with presentation of algorithmic framework for data acquisition and analysis, concluded with experimental results, and summary pointing out at the possibility to discriminate causal connections between different sorts of real field market data with further discussion on present issues and possible directions of the following work.
RST-style discourse parsing plays a vital role in many NLP tasks, revealing the underlying semantic/pragmatic structure of potentially complex and diverse documents. Despite its importance, one of the most prevailing limitations in modern day discourse parsing is the lack of large-scale datasets. To overcome the data sparsity issue, distantly supervised approaches from tasks like sentiment analysis and summarization have been recently proposed. Here, we extend this line of research by exploiting distant supervision from topic segmentation, which can arguably provide a strong and oftentimes complementary signal for high-level discourse structures. Experiments on two human-annotated discourse treebanks confirm that our proposal generates accurate tree structures on sentence and paragraph level, consistently outperforming previous distantly supervised models on the sentence-to-document task and occasionally reaching even higher scores on the sentence-to-paragraph level.
In the era of deep learning, modeling for most NLP tasks has converged to several mainstream paradigms. For example, we usually adopt the sequence labeling paradigm to solve a bundle of tasks such as POS-tagging, NER, Chunking, and adopt the classification paradigm to solve tasks like sentiment analysis. With the rapid progress of pre-trained language models, recent years have observed a rising trend of Paradigm Shift, which is solving one NLP task by reformulating it as another one. Paradigm shift has achieved great success on many tasks, becoming a promising way to improve model performance. Moreover, some of these paradigms have shown great potential to unify a large number of NLP tasks, making it possible to build a single model to handle diverse tasks. In this paper, we review such phenomenon of paradigm shifts in recent years, highlighting several paradigms that have the potential to solve different NLP tasks.
Bias in natural language processing arises primarily from models learning characteristics of the author such as gender and race when modelling tasks such as sentiment and syntactic parsing. This problem manifests as disparities in error rates across author demographics, typically disadvantaging minority groups. Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables. Moreover, evaluation of bias has been inconsistent in previous work, in terms of dataset balance and evaluation methods. This paper introduces a very simple but highly effective method for countering bias using instance reweighting, based on the frequency of both task labels and author demographics. We extend the method in the form of a gated model which incorporates the author demographic as an input, and show that while it is highly vulnerable to input data bias, it provides debiased predictions through demographic input perturbation, and outperforms all other bias mitigation techniques when combined with instance reweighting.
One major sub-domain in the subject of polling public opinion with social media data is electoral prediction. Electoral prediction utilizing social media data potentially would significantly affect campaign strategies, complementing traditional polling methods and providing cheaper polling in real-time. First, this paper explores past successful methods from research for analysis and prediction of the 2020 US Presidential Election using Twitter data. Then, this research proposes a new method for electoral prediction which combines sentiment, from NLP on the text of tweets, and structural data with aggregate polling, a time series analysis, and a special focus on Twitter users critical to the election. Though this method performed worse than its baseline of polling predictions, it is inconclusive whether this is an accurate method for predicting elections due to scarcity of data. More research and more data are needed to accurately measure this method's overall effectiveness.
To examine whether intersectional bias can be observed in language generation, we examine \emph{GPT-2} and \emph{GPT-NEO} models, ranging in size from 124 million to ~2.7 billion parameters. We conduct an experiment combining up to three social categories - gender, religion and disability - into unconditional or zero-shot prompts used to generate sentences that are then analysed for sentiment. Our results confirm earlier tests conducted with auto-regressive causal models, including the \emph{GPT} family of models. We also illustrate why bias may be resistant to techniques that target single categories (e.g. gender, religion and race), as it can also manifest, in often subtle ways, in texts prompted by concatenated social categories. To address these difficulties, we suggest technical and community-based approaches need to combine to acknowledge and address complex and intersectional language model bias.
Aspect category detection (ACD) is one of the challenging tasks in the Aspect-based sentiment Analysis problem. The purpose of this task is to identify the aspect categories mentioned in user-generated reviews from a set of pre-defined categories. In this paper, we investigate the performance of various monolingual pre-trained language models compared with multilingual models on the Vietnamese aspect category detection problem. We conduct the experiments on two benchmark datasets for the restaurant and hotel domain. The experimental results demonstrated the effectiveness of the monolingual PhoBERT model than others on two datasets. We also evaluate the performance of the multilingual model based on the combination of whole SemEval-2016 datasets in other languages with the Vietnamese dataset. To the best of our knowledge, our research study is the first attempt at performing various available pre-trained language models on aspect category detection task and utilize the datasets from other languages based on multilingual models.
In recent times, BERT-based models have been extremely successful in solving a variety of natural language processing (NLP) tasks such as reading comprehension, natural language inference, sentiment analysis, etc. All BERT-based architectures have a self-attention block followed by a block of intermediate layers as the basic building component. However, a strong justification for the inclusion of these intermediate layers remains missing in the literature. In this work we investigate the importance of intermediate layers on the overall network performance of downstream tasks. We show that reducing the number of intermediate layers and modifying the architecture for BERT-Base results in minimal loss in fine-tuning accuracy for downstream tasks while decreasing the number of parameters and training time of the model. Additionally, we use the central kernel alignment (CKA) similarity metric and probing classifiers to demonstrate that removing intermediate layers has little impact on the learned self-attention representations.
In Natural Language Processing (NLP), pre-trained language models (LMs) that are transferred to downstream tasks have been recently shown to achieve state-of-the-art results. In this work, we extend the standard fine-tuning process of pretrained LMs by introducing a new regularization technique, AFTER; domain Adversarial Fine-Tuning as an Effective Regularizer. Specifically, we complement the task-specific loss used during fine-tuning with an adversarial objective. This additional loss term is related to an adversarial classifier, that aims to discriminate between in-domain and out-of-domain text representations. In-domain refers to the labeled dataset of the task at hand while out-of-domain refers to unlabeled data from a different domain. Intuitively, the adversarial classifier acts as a regularizer which prevents the model from overfitting to the task-specific domain. Empirical results on sentiment analysis, linguistic acceptability, and paraphrase detection show that AFTERleads to improved performance compared to standard fine-tuning.