We introduce a new metric for measuring how well a model personalizes to a user's specific preferences. We define personalization as a weighting between performance on user specific data and performance on a more general global dataset that represents many different users. This global term serves as a form of regularization that forces us to not overfit to individual users who have small amounts of data. In order to protect user privacy, we add the constraint that we may not centralize or share user data. We also contribute a simple experiment in which we simulate classifying sentiment for users with very distinct vocabularies. This experiment functions as an example of the tension between doing well globally on all users, and doing well on any specific individual user. It also provides a concrete example of how to employ our new metric to help reason about and resolve this tension. We hope this work can help frame and ground future work into personalization.
Analyses of text corpora over time can reveal trends in beliefs, interest, and sentiment about a topic. We focus on views expressed about artificial intelligence (AI) in the New York Times over a 30-year period. General interest, awareness, and discussion about AI has waxed and waned since the field was founded in 1956. We present a set of measures that captures levels of engagement, measures of pessimism and optimism, the prevalence of specific hopes and concerns, and topics that are linked to discussions about AI over decades. We find that discussion of AI has increased sharply since 2009, and that these discussions have been consistently more optimistic than pessimistic. However, when we examine specific concerns, we find that worries of loss of control of AI, ethical concerns for AI, and the negative impact of AI on work have grown in recent years. We also find that hopes for AI in healthcare and education have increased over time.
Recurrent neural networks are a powerful tool for modeling sequential data, but the dependence of each timestep's computation on the previous timestep's output limits parallelism and makes RNNs unwieldy for very long sequences. We introduce quasi-recurrent neural networks (QRNNs), an approach to neural sequence modeling that alternates convolutional layers, which apply in parallel across timesteps, and a minimalist recurrent pooling function that applies in parallel across channels. Despite lacking trainable recurrent layers, stacked QRNNs have better predictive accuracy than stacked LSTMs of the same hidden size. Due to their increased parallelism, they are up to 16 times faster at train and test time. Experiments on language modeling, sentiment classification, and character-level neural machine translation demonstrate these advantages and underline the viability of QRNNs as a basic building block for a variety of sequence tasks.
Many current natural language processing applications for social media rely on representation learning and utilize pre-trained word embeddings. There currently exist several publicly-available, pre-trained sets of word embeddings, but they contain few or no emoji representations even as emoji usage in social media has increased. In this paper we release emoji2vec, pre-trained embeddings for all Unicode emoji which are learned from their description in the Unicode emoji standard. The resulting emoji embeddings can be readily used in downstream social natural language processing applications alongside word2vec. We demonstrate, for the downstream task of sentiment analysis, that emoji embeddings learned from short descriptions outperforms a skip-gram model trained on a large collection of tweets, while avoiding the need for contexts in which emoji need to appear frequently in order to estimate a representation.
The classification of television content helps users organise and navigate through the large list of channels and programs now available. In this paper, we address the problem of television content classification by exploiting text information extracted from program transcriptions. We present an analysis which adapts a model for sentiment that has been widely and successfully applied in other fields such as music or blog posts. We use a real-world dataset obtained from the Boxfish API to compare the performance of classifiers trained on a number of different feature sets. Our experiments show that, over a large collection of television content, program genres can be represented in a three-dimensional space of valence, arousal and dominance, and that promising classification results can be achieved using features based on this representation. This finding supports the use of the proposed representation of television content as a feature space for similarity computation and recommendation generation.
In this paper we propose a general framework for learning distributed representations of attributes: characteristics of text whose representations can be jointly learned with word embeddings. Attributes can correspond to document indicators (to learn sentence vectors), language indicators (to learn distributed language representations), meta-data and side information (such as the age, gender and industry of a blogger) or representations of authors. We describe a third-order model where word context and attribute vectors interact multiplicatively to predict the next word in a sequence. This leads to the notion of conditional word similarity: how meanings of words change when conditioned on different attributes. We perform several experimental tasks including sentiment classification, cross-lingual document classification, and blog authorship attribution. We also qualitatively evaluate conditional word neighbours and attribute-conditioned text generation.
Natural language is generated by people, yet traditional language modeling views words or documents as if generated independently. Here, we propose human language modeling (HuLM), a hierarchical extension to the language modeling problem whereby a human-level exists to connect sequences of documents (e.g. social media messages) and capture the notion that human language is moderated by changing human states. We introduce, HaRT, a large-scale transformer model for the HuLM task, pre-trained on approximately 100,000 social media users, and demonstrate its effectiveness in terms of both language modeling (perplexity) for social media and fine-tuning for 4 downstream tasks spanning document- and user-levels: stance detection, sentiment classification, age estimation, and personality assessment. Results on all tasks meet or surpass the current state-of-the-art.
Expert finding has been well-studied in community question answering (QA) systems in various domains. However, none of these studies addresses expert finding in the legal domain, where the goal is for citizens to find lawyers based on their expertise. In the legal domain, there is a large knowledge gap between the experts and the searchers, and the content on the legal QA websites consist of a combination formal and informal communication. In this paper, we propose methods for generating query-dependent textual profiles for lawyers covering several aspects including sentiment, comments, and recency. We combine query-dependent profiles with existing expert finding methods. Our experiments are conducted on a novel dataset gathered from an online legal QA service. We discovered that taking into account different lawyer profile aspects improves the best baseline model. We make our dataset publicly available for future work.
Research on adversarial attacks are becoming widely popular in the recent years. One of the unexplored areas where prior research is lacking is the effect of adversarial attacks on code-mixed data. Therefore, in the present work, we have explained the first generalized framework on text perturbation to attack code-mixed classification models in a black-box setting. We rely on various perturbation techniques that preserve the semantic structures of the sentences and also obscure the attacks from the perception of a human user. The present methodology leverages the importance of a token to decide where to attack by employing various perturbation strategies. We test our strategies on various sentiment classification models trained on Bengali-English and Hindi-English code-mixed datasets, and reduce their F1-scores by nearly 51 % and 53 % respectively, which can be further reduced if a larger number of tokens are perturbed in a given sentence.