Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Sentiment and Knowledge Based Algorithmic Trading with Deep Reinforcement Learning

Jan 26, 2020
Abhishek Nan, Anandh Perumal, Osmar R. Zaiane

Algorithmic trading, due to its inherent nature, is a difficult problem to tackle; there are too many variables involved in the real world which make it almost impossible to have reliable algorithms for automated stock trading. The lack of reliable labelled data that considers physical and physiological factors that dictate the ups and downs of the market, has hindered the supervised learning attempts for dependable predictions. To learn a good policy for trading, we formulate an approach using reinforcement learning which uses traditional time series stock price data and combines it with news headline sentiments, while leveraging knowledge graphs for exploiting news about implicit relationships.


  Access Paper or Ask Questions

Sentiment and structure in word co-occurrence networks on Twitter

Oct 01, 2021
Mikaela Irene Fudolig, Thayer Alshaabi, Michael V. Arnold, Christopher M. Danforth, Peter Sheridan Dodds

We explore the relationship between context and happiness scores in political tweets using word co-occurrence networks, where nodes in the network are the words, and the weight of an edge is the number of tweets in the corpus for which the two connected words co-occur. In particular, we consider tweets with hashtags #imwithher and #crookedhillary, both relating to Hillary Clinton's presidential bid in 2016. We then analyze the network properties in conjunction with the word scores by comparing with null models to separate the effects of the network structure and the score distribution. Neutral words are found to be dominant and most words, regardless of polarity, tend to co-occur with neutral words. We do not observe any score homophily among positive and negative words. However, when we perform network backboning, community detection results in word groupings with meaningful narratives, and the happiness scores of the words in each group correspond to its respective theme. Thus, although we observe no clear relationship between happiness scores and co-occurrence at the node or edge level, a community-centric approach can isolate themes of competing sentiments in a corpus.


  Access Paper or Ask Questions

DomBERT: Domain-oriented Language Model for Aspect-based Sentiment Analysis

Apr 28, 2020
Hu Xu, Bing Liu, Lei Shu, Philip S. Yu

This paper focuses on learning domain-oriented language models driven by end tasks, which aims to combine the worlds of both general-purpose language models (such as ELMo and BERT) and domain-specific language understanding. We propose DomBERT, an extension of BERT to learn from both in-domain corpus and relevant domain corpora. This helps in learning domain language models with low-resources. Experiments are conducted on an assortment of tasks in aspect-based sentiment analysis, demonstrating promising results.


  Access Paper or Ask Questions

Ethics Sheet for Automatic Emotion Recognition and Sentiment Analysis

Sep 17, 2021
Saif M. Mohammad

The importance and pervasiveness of emotions in our lives makes affective computing a tremendously important and vibrant line of work. Systems for automatic emotion recognition (AER) and sentiment analysis can be facilitators of enormous progress (e.g., in improving public health and commerce) but also enablers of great harm (e.g., for suppressing dissidents and manipulating voters). Thus, it is imperative that the affective computing community actively engage with the ethical ramifications of their creations. In this paper, I have synthesized and organized information from AI Ethics and Emotion Recognition literature to present fifty ethical considerations relevant to AER. Notably, the sheet fleshes out assumptions hidden in how AER is commonly framed, and in the choices often made regarding the data, method, and evaluation. Special attention is paid to the implications of AER on privacy and social groups. The objective of the sheet is to facilitate and encourage more thoughtfulness on why to automate, how to automate, and how to judge success well before the building of AER systems. Additionally, the sheet acts as a useful introductory document on emotion recognition (complementing survey articles).


  Access Paper or Ask Questions

A Novel Deep Learning Method for Textual Sentiment Analysis

Feb 23, 2021
Hossein Sadr, Mozhdeh Nazari Solimandarabi, Mir Mohsen Pedram, Mohammad Teshnehlab

Sentiment analysis is known as one of the most crucial tasks in the field of natural language processing and Convolutional Neural Network (CNN) is one of those prominent models that is commonly used for this aim. Although convolutional neural networks have obtained remarkable results in recent years, they are still confronted with some limitations. Firstly, they consider that all words in a sentence have equal contributions in the sentence meaning representation and are not able to extract informative words. Secondly, they require a large number of training data to obtain considerable results while they have many parameters that must be accurately adjusted. To this end, a convolutional neural network integrated with a hierarchical attention layer is proposed which is able to extract informative words and assign them higher weight. Moreover, the effect of transfer learning that transfers knowledge learned in the source domain to the target domain with the aim of improving the performance is also explored. Based on the empirical results, the proposed model not only has higher classification accuracy and can extract informative words but also applying incremental transfer learning can significantly enhance the classification performance.


  Access Paper or Ask Questions

How recurrent networks implement contextual processing in sentiment analysis

Apr 17, 2020
Niru Maheswaranathan, David Sussillo

Neural networks have a remarkable capacity for contextual processing--using recent or nearby inputs to modify processing of current input. For example, in natural language, contextual processing is necessary to correctly interpret negation (e.g. phrases such as "not bad"). However, our ability to understand how networks process context is limited. Here, we propose general methods for reverse engineering recurrent neural networks (RNNs) to identify and elucidate contextual processing. We apply these methods to understand RNNs trained on sentiment classification. This analysis reveals inputs that induce contextual effects, quantifies the strength and timescale of these effects, and identifies sets of these inputs with similar properties. Additionally, we analyze contextual effects related to differential processing of the beginning and end of documents. Using the insights learned from the RNNs we improve baseline Bag-of-Words models with simple extensions that incorporate contextual modification, recovering greater than 90% of the RNN's performance increase over the baseline. This work yields a new understanding of how RNNs process contextual information, and provides tools that should provide similar insight more broadly.


  Access Paper or Ask Questions

Hybrid Tiled Convolutional Neural Networks for Text Sentiment Classification

Jan 31, 2020
Maria Mihaela Trusca, Gerasimos Spanakis

The tiled convolutional neural network (tiled CNN) has been applied only to computer vision for learning invariances. We adjust its architecture to NLP to improve the extraction of the most salient features for sentiment analysis. Knowing that the major drawback of the tiled CNN in the NLP field is its inflexible filter structure, we propose a novel architecture called hybrid tiled CNN that applies a filter only on the words that appear in the similar contexts and on their neighbor words (a necessary step for preventing the loss of some n-grams). The experiments on the datasets of IMDB movie reviews and SemEval 2017 demonstrate the efficiency of the hybrid tiled CNN that performs better than both CNN and tiled CNN.

* 8 pages, 2 figures, accepted for publication in the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020), Malta, 22-24 February 2020 

  Access Paper or Ask Questions

Quantum Criticism: A Tagged News Corpus Analysed for Sentiment and Named Entities

Jun 05, 2020
Ashwini Badgujar, Sheng Chen, Andrew Wang, Kai Yu, Paul Intrevado, David Guy Brizan

In this research, we continuously collect data from the RSS feeds of traditional news sources. We apply several pre-trained implementations of named entity recognition (NER) tools, quantifying the success of each implementation. We also perform sentiment analysis of each news article at the document, paragraph and sentence level, with the goal of creating a corpus of tagged news articles that is made available to the public through a web interface. Finally, we show how the data in this corpus could be used to identify bias in news reporting.


  Access Paper or Ask Questions

Weakly-Supervised Deep Learning for Domain Invariant Sentiment Classification

Nov 23, 2019
Pratik Kayal, Mayank Singh, Pawan Goyal

The task of learning a sentiment classification model that adapts well to any target domain, different from the source domain, is a challenging problem. Majority of the existing approaches focus on learning a common representation by leveraging both source and target data during training. In this paper, we introduce a two-stage training procedure that leverages weakly supervised datasets for developing simple lift-and-shift-based predictive models without being exposed to the target domain during the training phase. Experimental results show that transfer with weak supervision from a source domain to various target domains provides performance very close to that obtained via supervised training on the target domain itself.

* 5 Pages, 3 tables 

  Access Paper or Ask Questions

<<
129
130
131
132
133
134
135
136
137
138
139
140
141
>>