Despite a substantial progress made in developing new sentiment lexicon generation (SLG) methods for English, the task of transferring these approaches to other languages and domains in a sound way still remains open. In this paper, we contribute to the solution of this problem by systematically comparing semi-automatic translations of common English polarity lists with the results of the original automatic SLG algorithms, which were applied directly to German data. We evaluate these lexicons on a corpus of 7,992 manually annotated tweets. In addition to that, we also collate the results of dictionary- and corpus-based SLG methods in order to find out which of these paradigms is better suited for the inherently noisy domain of social media. Our experiments show that semi-automatic translations notably outperform automatic systems (reaching a macro-averaged F1-score of 0.589), and that dictionary-based techniques produce much better polarity lists as compared to corpus-based approaches (whose best F1-scores run up to 0.479 and 0.419 respectively) even for the non-standard Twitter genre.
We undertake the task of comparing lexicon-based sentiment classification of film reviews with machine learning approaches. We look at existing methodologies and attempt to emulate and improve on them using a 'given' lexicon and a bag-of-words approach. We also utilise syntactical information such as part-of-speech and dependency relations. We will show that a simple lexicon-based classification achieves good results however machine learning techniques prove to be the superior tool. We also show that more features do not necessarily deliver better performance as well as elaborate on three further enhancements not tested in this article.
Many approaches to sentiment analysis rely on lexica where words are tagged with their prior polarity - i.e. if a word out of context evokes something positive or something negative. In particular, broad-coverage resources like SentiWordNet provide polarities for (almost) every word. Since words can have multiple senses, we address the problem of how to compute the prior polarity of a word starting from the polarity of each sense and returning its polarity strength as an index between -1 and 1. We compare 14 such formulae that appear in the literature, and assess which one best approximates the human judgement of prior polarities, with both regression and classification models.
The popularization of the internet created a revitalized digital media. With monetization driven by clicks, journalists have reprioritized their content for the highly competitive atmosphere of online news. The resulting negativity bias is harmful and can lead to anxiety and mood disturbance. We utilized a pipeline of 4 sentiment analysis models trained on various datasets - using Sequential, LSTM, BERT, and SVM models. When combined, the application, a mobile app, solely displays uplifting and inspiring stories for users to read. Results have been successful - 1,300 users rate the app at 4.9 stars, and 85% report improved mental health by using it.
Social Media users tend to mention entities when reacting to news events. The main purpose of this work is to create entity-centric aggregations of tweets on a daily basis. By applying topic modeling and sentiment analysis, we create data visualization insights about current events and people reactions to those events from an entity-centric perspective.
On social media, Arabic people tend to express themselves in their own local dialects. More particularly, Tunisians use the informal way called "Tunisian Arabizi". Analytical studies seek to explore and recognize online opinions aiming to exploit them for planning and prediction purposes such as measuring the customer satisfaction and establishing sales and marketing strategies. However, analytical studies based on Deep Learning are data hungry. On the other hand, African languages and dialects are considered low resource languages. For instance, to the best of our knowledge, no annotated Tunisian Arabizi dataset exists. In this paper, we introduce TUNIZI a sentiment analysis Tunisian Arabizi Dataset, collected from social networks, preprocessed for analytical studies and annotated manually by Tunisian native speakers.
Twitter social network contains a large amount of information generated by its users. That information is composed of opinions and comments that may reflect trends in social behavior. There is talk of trend when it is possible to identify opinions and comments geared towards the same shared by a lot of people direction. To determine if two or more written opinions share the same address, techniques Natural Language Processing (NLP) are used. This paper proposes a methodology for predicting reflected in Twitter from the use of sentiment analysis functions NLP based on social behaviors. The case study was selected the 2015 Presidential in Argentina, and a software architecture Big Data composed Vertica data base with the component called Pulse was used. Through the analysis it was possible to detect trends in voting intentions with regard to the presidential candidates, achieving greater accuracy in predicting that achieved with traditional systems surveys.
Analysis of a large amount of data has always brought value to institutions and organizations. Lately, people's opinions expressed through text have become a very important aspect of this analysis. In response to this challenge, a natural language processing technique known as Aspect-Based Sentiment Analysis (ABSA) has emerged. Having the ability to extract the polarity for each aspect of opinions separately, ABSA has found itself useful in a wide range of domains. Education is one of the domains in which ABSA can be successfully utilized. Being able to understand and find out what students like and don't like most about a course, professor, or teaching methodology can be of great importance for the respective institutions. While this task represents a unique NLP challenge, many studies have proposed different approaches to tackle the problem. In this work, we present a comprehensive review of the existing work in ABSA with a focus in the education domain. A wide range of methodologies are discussed and conclusions are drawn.
Many NLP learning tasks can be decomposed into several distinct sub-tasks, each associated with a partial label. In this paper we focus on a popular class of learning problems, sequence prediction applied to several sentiment analysis tasks, and suggest a modular learning approach in which different sub-tasks are learned using separate functional modules, combined to perform the final task while sharing information. Our experiments show this approach helps constrain the learning process and can alleviate some of the supervision efforts.
This article presents classifiers based on SVM and Convolutional Neural Networks (CNN) for the TASS 2017 challenge on tweets sentiment analysis. The classifier with the best performance in general uses a combination of SVM and CNN. The use of word embeddings was particularly useful for improving the classifiers performance.