Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

Citations are not opinions: a corpus linguistics approach to understanding how citations are made

Apr 16, 2021
Domenic Rosati

Citation content analysis seeks to understand citations based on the language used during the making of a citation. A key issue in citation content analysis is looking for linguistic structures that characterize distinct classes of citations for the purposes of understanding the intent and function of a citation. Previous works have focused on modeling linguistic features first and drawn conclusions on the language structures unique to each class of citation function based on the performance of a classification task or inter-annotator agreement. In this study, we start with a large sample of a pre-classified citation corpus, 2 million citations from each class of the scite Smart Citation dataset (supporting, disputing, and mentioning citations), and analyze its corpus linguistics in order to reveal the unique and statistically significant language structures belonging to each type of citation. By generating comparison tables for each citation type we present a number of interesting linguistic features that uniquely characterize citation type. What we find is that within citation collocates, there is very low correlation between citation type and sentiment. Additionally, we find that the subjectivity of citation collocates across classes is very low. These findings suggest that the sentiment of collocates is not a predictor of citation function and that due to their low subjectivity, an opinion-expressing mode of understanding citations, implicit in previous citation sentiment analysis literature, is inappropriate. Instead, we suggest that citations can be better understood as claims-making devices where the citation type can be explained by understanding how two claims are being compared. By presenting this approach, we hope to inspire similar corpus linguistic studies on citations that derive a more robust theory of citation from an empirical basis using citation corpora

  Access Paper or Ask Questions

Measuring Book Impact Based on the Multi-granularity Online Review Mining

Mar 26, 2016
Qingqing Zhou, Chengzhi Zhang, Star X. Zhao, Bikun Chen

As with articles and journals, the customary methods for measuring books' academic impact mainly involve citations, which is easy but limited to interrogating traditional citation databases and scholarly book reviews, Researchers have attempted to use other metrics, such as Google Books, libcitation, and publisher prestige. However, these approaches lack content-level information and cannot determine the citation intentions of users. Meanwhile, the abundant online review resources concerning academic books can be used to mine deeper information and content utilizing altmetric perspectives. In this study, we measure the impacts of academic books by multi-granularity mining online reviews, and we identify factors that affect a book's impact. First, online reviews of a sample of academic books on are crawled and processed. Then, multi-granularity review mining is conducted to identify review sentiment polarities and aspects' sentiment values. Lastly, the numbers of positive reviews and negative reviews, aspect sentiment values, star values, and information regarding helpfulness are integrated via the entropy method, and lead to the calculation of the final book impact scores. The results of a correlation analysis of book impact scores obtained via our method versus traditional book citations show that, although there are substantial differences between subject areas, online book reviews tend to reflect the academic impact. Thus, we infer that online reviews represent a promising source for mining book impact within the altmetric perspective and at the multi-granularity content level. Moreover, our proposed method might also be a means by which to measure other books besides academic publications.

* 21pages,3 figures, 12 tables 

  Access Paper or Ask Questions

Validating GAN-BioBERT: A Methodology For Assessing Reporting Trends In Clinical Trials

Jun 01, 2021
Joshua J Myszewski, Emily Klossowski, Patrick Meyer, Kristin Bevil, Lisa Klesius, Kristopher M Schroeder

In the past decade, there has been much discussion about the issue of biased reporting in clinical research. Despite this attention, there have been limited tools developed for the systematic assessment of qualitative statements made in clinical research, with most studies assessing qualitative statements relying on the use of manual expert raters, which limits their size. Also, previous attempts to develop larger scale tools, such as those using natural language processing, were limited by both their accuracy and the number of categories used for the classification of their findings. With these limitations in mind, this study's goal was to develop a classification algorithm that was both suitably accurate and finely grained to be applied on a large scale for assessing the qualitative sentiment expressed in clinical trial abstracts. Additionally, this study seeks to compare the performance of the proposed algorithm, GAN-BioBERT, to previous studies as well as to expert manual rating of clinical trial abstracts. This study develops a three-class sentiment classification algorithm for clinical trial abstracts using a semi-supervised natural language process model based on the Bidirectional Encoder Representation from Transformers (BERT) model, from a series of clinical trial abstracts annotated by a group of experts in academic medicine. Results: The use of this algorithm was found to have a classification accuracy of 91.3%, with a macro F1-Score of 0.92, which is a significant improvement in accuracy when compared to previous methods and expert ratings, while also making the sentiment classification finer grained than previous studies. The proposed algorithm, GAN-BioBERT, is a suitable classification model for the large-scale assessment of qualitative statements in clinical trial literature, providing an accurate, reproducible tool for the large-scale study of clinical publication trends.

* 6 pages, 2 figures 

  Access Paper or Ask Questions

Sarcasm detection from user-generated noisy short text

Nov 26, 2020
Prakamya Mishra

Sentiment analysis of social media comments is very important for review analysis. Many online reviews are sarcastic, humorous, or hateful. This sarcastic nature of these short texts change the actual sentiments of the review as predicted by a machine learning model that attempts to detect sentiment alone. Thus, having a model that is explicitly aware of these features should help it perform better on reviews that are characterized by them. Several research has already been done in this field. This paper deals with sarcasm detection on reddit comments. Several machine learning and deep learning algorithms have been applied for the same but each of these models only take into account the initial text instead of the conversation which serves as a better measure to determine sarcasm. The other shortcoming these papers have is they rely on word embedding for representing comments and thus do not take into account the problem of polysemy(A word can have multiple meanings based on the context in which it appears). These existing modules were able to solve the problem of capturing inter sentence contextual information but not the intra sentence contextual information. So we propose a novel architecture which solves the problem of sarcasm detection by capturing intra sentence contextual information using a novel contextual attention mechanism. The proposed model solves the problem of polysemy also by using context enriched language modules like ELMO and BERT in its first component. This model comprises a total of three major components which takes into account inter sentence, intra sentence contextual information and at last use a convolutional neural network for capturing global contextual information for sarcasm detection. The proposed model was able to generate decent results and cleared showed potential to perform state of the art if trained on a larger dataset.

* This paper is incomplete 

  Access Paper or Ask Questions

Good Friends, Bad News - Affect and Virality in Twitter

Jan 03, 2011
Lars Kai Hansen, Adam Arvidsson, Finn Årup Nielsen, Elanor Colleoni, Michael Etter

The link between affect, defined as the capacity for sentimental arousal on the part of a message, and virality, defined as the probability that it be sent along, is of significant theoretical and practical importance, e.g. for viral marketing. A quantitative study of emailing of articles from the NY Times finds a strong link between positive affect and virality, and, based on psychological theories it is concluded that this relation is universally valid. The conclusion appears to be in contrast with classic theory of diffusion in news media emphasizing negative affect as promoting propagation. In this paper we explore the apparent paradox in a quantitative analysis of information diffusion on Twitter. Twitter is interesting in this context as it has been shown to present both the characteristics social and news media. The basic measure of virality in Twitter is the probability of retweet. Twitter is different from email in that retweeting does not depend on pre-existing social relations, but often occur among strangers, thus in this respect Twitter may be more similar to traditional news media. We therefore hypothesize that negative news content is more likely to be retweeted, while for non-news tweets positive sentiments support virality. To test the hypothesis we analyze three corpora: A complete sample of tweets about the COP15 climate summit, a random sample of tweets, and a general text corpus including news. The latter allows us to train a classifier that can distinguish tweets that carry news and non-news information. We present evidence that negative sentiment enhances virality in the news segment, but not in the non-news segment. We conclude that the relation between affect and virality is more complex than expected based on the findings of Berger and Milkman (2010), in short 'if you want to be cited: Sweet talk your friends or serve bad news to the public'.

* 14 pages, 1 table. Submitted to The 2011 International Workshop on Social Computing, Network, and Services (SocialComNet 2011) 

  Access Paper or Ask Questions

Deliberate Self-Attention Network with Uncertainty Estimation for Multi-Aspect Review Rating Prediction

Sep 18, 2020
Tian Shi, Ping Wang, Chandan K. Reddy

In recent years, several online platforms have seen a rapid increase in the number of review systems that request users to provide aspect-level feedback. Multi-Aspect Rating Prediction (MARP), where the goal is to predict the ratings from a review at an individual aspect level, has become a challenging and an imminent problem. To tackle this challenge, we propose a deliberate self-attention deep neural network model, named as FEDAR, for the MARP problem, which can achieve competitive performance while also being able to interpret the predictions made. As opposed to the previous studies, which make use of hand-crafted keywords to determine aspects in sentiment predictions, our model does not suffer from human bias issues since aspect keywords are automatically detected through a self-attention mechanism. FEDAR is equipped with a highway word embedding layer to transfer knowledge from pre-trained word embeddings, an RNN encoder layer with output features enriched by pooling and factorization techniques, and a deliberate self-attention layer. In addition, we also propose an Attention-driven Keywords Ranking (AKR) method, which can automatically extract aspect-level sentiment-related keywords from the review corpus based on the attention weights. Since crowdsourcing annotation can be an alternate way to recover missing ratings of reviews, we propose a LEcture-AuDience (LEAD) strategy to estimate model uncertainty in the context of multi-task learning, so that valuable human resources can focus on the most uncertain predictions. Our extensive set of experiments on different DMSC datasets demonstrate the superiority of the proposed FEDAR and LEAD models. Visualization of aspect-level sentiment keywords demonstrate the interpretability of our model and effectiveness of our AKR method.

  Access Paper or Ask Questions

Detect Professional Malicious User with Metric Learning in Recommender Systems

May 19, 2022
Yuanbo Xu, Yongjian Yang, En Wang, Fuzhen Zhuang, Hui Xiong

In e-commerce, online retailers are usually suffering from professional malicious users (PMUs), who utilize negative reviews and low ratings to their consumed products on purpose to threaten the retailers for illegal profits. Specifically, there are three challenges for PMU detection: 1) professional malicious users do not conduct any abnormal or illegal interactions (they never concurrently leave too many negative reviews and low ratings at the same time), and they conduct masking strategies to disguise themselves. Therefore, conventional outlier detection methods are confused by their masking strategies. 2) the PMU detection model should take both ratings and reviews into consideration, which makes PMU detection a multi-modal problem. 3) there are no datasets with labels for professional malicious users in public, which makes PMU detection an unsupervised learning problem. To this end, we propose an unsupervised multi-modal learning model: MMD, which employs Metric learning for professional Malicious users Detection with both ratings and reviews. MMD first utilizes a modified RNN to project the informational review into a sentiment score, which jointly considers the ratings and reviews. Then professional malicious user profiling (MUP) is proposed to catch the sentiment gap between sentiment scores and ratings. MUP filters the users and builds a candidate PMU set. We apply a metric learning-based clustering to learn a proper metric matrix for PMU detection. Finally, we can utilize this metric and labeled users to detect PMUs. Specifically, we apply the attention mechanism in metric learning to improve the model's performance. The extensive experiments in four datasets demonstrate that our proposed method can solve this unsupervised detection problem. Moreover, the performance of the state-of-the-art recommender models is enhanced by taking MMD as a preprocessing stage.

* Accepted by IEEE Transactions on Knowledge and Data Engineering (TKDE) 

  Access Paper or Ask Questions

Discovering Airline-Specific Business Intelligence from Online Passenger Reviews: An Unsupervised Text Analytics Approach

Dec 14, 2020
Sharan Srinivas, Surya Ramachandiran

To understand the important dimensions of service quality from the passenger's perspective and tailor service offerings for competitive advantage, airlines can capitalize on the abundantly available online customer reviews (OCR). The objective of this paper is to discover company- and competitor-specific intelligence from OCR using an unsupervised text analytics approach. First, the key aspects (or topics) discussed in the OCR are extracted using three topic models - probabilistic latent semantic analysis (pLSA) and two variants of Latent Dirichlet allocation (LDA-VI and LDA-GS). Subsequently, we propose an ensemble-assisted topic model (EA-TM), which integrates the individual topic models, to classify each review sentence to the most representative aspect. Likewise, to determine the sentiment corresponding to a review sentence, an ensemble sentiment analyzer (E-SA), which combines the predictions of three opinion mining methods (AFINN, SentiStrength, and VADER), is developed. An aspect-based opinion summary (AOS), which provides a snapshot of passenger-perceived strengths and weaknesses of an airline, is established by consolidating the sentiments associated with each aspect. Furthermore, a bi-gram analysis of the labeled OCR is employed to perform root cause analysis within each identified aspect. A case study involving 99,147 airline reviews of a US-based target carrier and four of its competitors is used to validate the proposed approach. The results indicate that a cost- and time-effective performance summary of an airline and its competitors can be obtained from OCR. Finally, besides providing theoretical and managerial implications based on our results, we also provide implications for post-pandemic preparedness in the airline industry considering the unprecedented impact of coronavirus disease 2019 (COVID-19) and predictions on similar pandemics in the future.

* 34 pages, 8 figures, 4 tables 

  Access Paper or Ask Questions

Spinning Language Models for Propaganda-As-A-Service

Dec 09, 2021
Eugene Bagdasaryan, Vitaly Shmatikov

We investigate a new threat to neural sequence-to-sequence (seq2seq) models: training-time attacks that cause models to "spin" their outputs so as to support an adversary-chosen sentiment or point of view, but only when the input contains adversary-chosen trigger words. For example, a spinned summarization model would output positive summaries of any text that mentions the name of some individual or organization. Model spinning enables propaganda-as-a-service. An adversary can create customized language models that produce desired spins for chosen triggers, then deploy them to generate disinformation (a platform attack), or else inject them into ML training pipelines (a supply-chain attack), transferring malicious functionality to downstream models. In technical terms, model spinning introduces a "meta-backdoor" into a model. Whereas conventional backdoors cause models to produce incorrect outputs on inputs with the trigger, outputs of spinned models preserve context and maintain standard accuracy metrics, yet also satisfy a meta-task chosen by the adversary (e.g., positive sentiment). To demonstrate feasibility of model spinning, we develop a new backdooring technique. It stacks the adversarial meta-task onto a seq2seq model, backpropagates the desired meta-task output to points in the word-embedding space we call "pseudo-words," and uses pseudo-words to shift the entire output distribution of the seq2seq model. We evaluate this attack on language generation, summarization, and translation models with different triggers and meta-tasks such as sentiment, toxicity, and entailment. Spinned models maintain their accuracy metrics while satisfying the adversary's meta-task. In supply chain attack the spin transfers to downstream models. Finally, we propose a black-box, meta-task-independent defense to detect models that selectively apply spin to inputs with a certain trigger.

* arXiv admin note: text overlap with arXiv:2107.10443 

  Access Paper or Ask Questions

Wasserstein Index Generation Model: Automatic Generation of Time-series Index with Application to Economic Policy Uncertainty

Aug 12, 2019
Fangzhou Xie

I propose a novel method, called the Wasserstein Index Generation model (WIG), to generate public sentiment index automatically. It can be performed off-the-shelf and is especially good at detecting sudden sentiment spikes. To test the model's effectiveness, an application to generate Economic Policy Uncertainty (EPU) index is showcased.

  Access Paper or Ask Questions