Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Sentiment": models, code, and papers

LEWIS: Levenshtein Editing for Unsupervised Text Style Transfer

May 18, 2021
Machel Reid, Victor Zhong

Many types of text style transfer can be achieved with only small, precise edits (e.g. sentiment transfer from I had a terrible time... to I had a great time...). We propose a coarse-to-fine editor for style transfer that transforms text using Levenshtein edit operations (e.g. insert, replace, delete). Unlike prior single-span edit methods, our method concurrently edits multiple spans in the source text. To train without parallel style text pairs (e.g. pairs of +/- sentiment statements), we propose an unsupervised data synthesis procedure. We first convert text to style-agnostic templates using style classifier attention (e.g. I had a SLOT time...), then fill in slots in these templates using fine-tuned pretrained language models. Our method outperforms existing generation and editing style transfer methods on sentiment (Yelp, Amazon) and politeness (Polite) transfer. In particular, multi-span editing achieves higher performance and more diverse output than single-span editing. Moreover, compared to previous methods on unsupervised data synthesis, our method results in higher quality parallel style pairs and improves model performance.

* ACL-IJCNLP 2021 (Findings) 

  Access Paper or Ask Questions

Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya

Jun 19, 2020
Abrhalei Tela, Abraham Woubie, Ville Hautamaki

In recent years, transformer models have achieved great success in natural language processing (NLP) tasks. Most of the current state-of-the-art NLP results are achieved by using monolingual transformer models, where the model is pre-trained using a single language unlabelled text corpus. Then, the model is fine-tuned to the specific downstream task. However, the cost of pre-training a new transformer model is high for most languages. In this work, we propose a cost-effective transfer learning method to adopt a strong source language model, trained from a large monolingual corpus to a low-resource language. Thus, using XLNet language model, we demonstrate competitive performance with mBERT and a pre-trained target language model on the cross-lingual sentiment (CLS) dataset and on a new sentiment analysis dataset for low-resourced language Tigrinya. With only 10k examples of the given Tigrinya sentiment analysis dataset, English XLNet has achieved 78.88% F1-Score outperforming BERT and mBERT by 10% and 7%, respectively. More interestingly, fine-tuning (English) XLNet model on the CLS dataset has promising results compared to mBERT and even outperformed mBERT for one dataset of the Japanese language.

  Access Paper or Ask Questions

Detecting Sarcasm in Multimodal Social Platforms

Aug 08, 2016
Rossano Schifanella, Paloma de Juan, Joel Tetreault, Liangliang Cao

Sarcasm is a peculiar form of sentiment expression, where the surface sentiment differs from the implied sentiment. The detection of sarcasm in social media platforms has been applied in the past mainly to textual utterances where lexical indicators (such as interjections and intensifiers), linguistic markers, and contextual information (such as user profiles, or past conversations) were used to detect the sarcastic tone. However, modern social media platforms allow to create multimodal messages where audiovisual content is integrated with the text, making the analysis of a mode in isolation partial. In our work, we first study the relationship between the textual and visual aspects in multimodal posts from three major social media platforms, i.e., Instagram, Tumblr and Twitter, and we run a crowdsourcing task to quantify the extent to which images are perceived as necessary by human annotators. Moreover, we propose two different computational frameworks to detect sarcasm that integrate the textual and visual modalities. The first approach exploits visual semantics trained on an external dataset, and concatenates the semantics features with state-of-the-art textual features. The second method adapts a visual neural network initialized with parameters trained on ImageNet to multimodal sarcastic posts. Results show the positive effect of combining modalities for the detection of sarcasm across platforms and methods.

* 10 pages, 3 figures, final version published in the Proceedings of ACM Multimedia 2016 

  Access Paper or Ask Questions

Blind signal decomposition of various word embeddings based on join and individual variance explained

Nov 30, 2020
Yikai Wang, Weijian Li

In recent years, natural language processing (NLP) has become one of the most important areas with various applications in human's life. As the most fundamental task, the field of word embedding still requires more attention and research. Currently, existing works about word embedding are focusing on proposing novel embedding algorithms and dimension reduction techniques on well-trained word embeddings. In this paper, we propose to use a novel joint signal separation method - JIVE to jointly decompose various trained word embeddings into joint and individual components. Through this decomposition framework, we can easily investigate the similarity and difference among different word embeddings. We conducted extensive empirical study on word2vec, FastText and GLoVE trained on different corpus and with different dimensions. We compared the performance of different decomposed components based on sentiment analysis on Twitter and Stanford sentiment treebank. We found that by mapping different word embeddings into the joint component, sentiment performance can be greatly improved for the original word embeddings with lower performance. Moreover, we found that by concatenating different components together, the same model can achieve better performance. These findings provide great insights into the word embeddings and our work offer a new of generating word embeddings by fusing.

* 9 pages, 10 figures 

  Access Paper or Ask Questions

Fiber Bundle Morphisms as a Framework for Modeling Many-to-Many Maps

Mar 15, 2022
Elizabeth Coda, Nico Courts, Colby Wight, Loc Truong, WoongJo Choi, Charles Godfrey, Tegan Emerson, Keerti Kappagantula, Henry Kvinge

While it is not generally reflected in the `nice' datasets used for benchmarking machine learning algorithms, the real-world is full of processes that would be best described as many-to-many. That is, a single input can potentially yield many different outputs (whether due to noise, imperfect measurement, or intrinsic stochasticity in the process) and many different inputs can yield the same output (that is, the map is not injective). For example, imagine a sentiment analysis task where, due to linguistic ambiguity, a single statement can have a range of different sentiment interpretations while at the same time many distinct statements can represent the same sentiment. When modeling such a multivalued function $f: X \rightarrow Y$, it is frequently useful to be able to model the distribution on $f(x)$ for specific input $x$ as well as the distribution on fiber $f^{-1}(y)$ for specific output $y$. Such an analysis helps the user (i) better understand the variance intrinsic to the process they are studying and (ii) understand the range of specific input $x$ that can be used to achieve output $y$. Following existing work which used a fiber bundle framework to better model many-to-one processes, we describe how morphisms of fiber bundles provide a template for building models which naturally capture the structure of many-to-many processes.

  Access Paper or Ask Questions

eDarkTrends: Harnessing Social Media Trends in Substance use disorders for Opioid Listings on Cryptomarket

Mar 29, 2021
Usha Lokala, Francois Lamy, Triyasha Ghosh Dastidar, Kaushik Roy, Raminta Daniulaityte, Srinivasan Parthasarathy, Amit Sheth

Opioid and substance misuse is rampant in the United States today, with the phenomenon known as the opioid crisis. The relationship between substance use and mental health has been extensively studied, with one possible relationship being substance misuse causes poor mental health. However, the lack of evidence on the relationship has resulted in opioids being largely inaccessible through legal means. This study analyzes the substance misuse posts on social media with the opioids being sold through crypto market listings. We use the Drug Abuse Ontology, state-of-the-art deep learning, and BERT-based models to generate sentiment and emotion for the social media posts to understand user perception on social media by investigating questions such as, which synthetic opioids people are optimistic, neutral, or negative about or what kind of drugs induced fear and sorrow or what kind of drugs people love or thankful about or which drug people think negatively about or which opioids cause little to no sentimental reaction. We also perform topic analysis associated with the generated sentiments and emotions to understand which topics correlate with people's responses to various drugs. Our findings can help shape policy to help isolate opioid use cases where timely intervention may be required to prevent adverse consequences, prevent overdose-related deaths, and worsen the epidemic.

* 6 pages, ICLR AI for Public Health Workshop 2021 

  Access Paper or Ask Questions

Coronavirus on Social Media: Analyzing Misinformation in Twitter Conversations

Apr 21, 2020
Karishma Sharma, Sungyong Seo, Chuizheng Meng, Sirisha Rambhatla, Aastha Dua, Yan Liu

The ongoing Coronavirus Disease (COVID-19) pandemic highlights the interconnected-ness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing number of people rely on social media platforms for news, identifying misinformation has emerged as a critical task in these unprecedented times. In addition to being malicious, the spread of such information poses a serious public health risk. To this end, we design a dashboard to track misinformation on popular social media news sharing platform - Twitter. The dashboard allows visibility into the social media discussions around Coronavirus and the quality of information shared on the platform, updated over time. We collect streaming data using the Twitter API from March 1, 2020 to date and identify false, misleading and clickbait contents from collected Tweets. We provide analysis of user accounts and misinformation spread across countries. In addition, we provide analysis of public sentiments on intervention policies such as "#socialdistancing" and "#workfromhome", and we track topics, and emerging hashtags and sentiments over countries. The dashboard maintains an evolving list of misinformation cascades, sentiments and emerging trends over time, accessible online at \url{}.

  Access Paper or Ask Questions

When Word Embeddings Become Endangered

Mar 24, 2021
Khalid Alnajjar

Big languages such as English and Finnish have many natural language processing (NLP) resources and models, but this is not the case for low-resourced and endangered languages as such resources are so scarce despite the great advantages they would provide for the language communities. The most common types of resources available for low-resourced and endangered languages are translation dictionaries and universal dependencies. In this paper, we present a method for constructing word embeddings for endangered languages using existing word embeddings of different resource-rich languages and the translation dictionaries of resource-poor languages. Thereafter, the embeddings are fine-tuned using the sentences in the universal dependencies and aligned to match the semantic spaces of the big languages; resulting in cross-lingual embeddings. The endangered languages we work with here are Erzya, Moksha, Komi-Zyrian and Skolt Sami. Furthermore, we build a universal sentiment analysis model for all the languages that are part of this study, whether endangered or not, by utilizing cross-lingual word embeddings. The evaluation conducted shows that our word embeddings for endangered languages are well-aligned with the resource-rich languages, and they are suitable for training task-specific models as demonstrated by our sentiment analysis model which achieved a high accuracy. All our cross-lingual word embeddings and the sentiment analysis model have been released openly via an easy-to-use Python library.

* In M. H\"am\"al\"ainen, N. Partanen, & K. Alnajjar (Eds.), Multilingual Facilitation (pp. 275-288). University of Helsinki (2021) 

  Access Paper or Ask Questions

Look, Read and Feel: Benchmarking Ads Understanding with Multimodal Multitask Learning

Jan 03, 2020
Huaizheng Zhang, Yong Luo, Qiming Ai, Yonggang Wen

Given the massive market of advertising and the sharply increasing online multimedia content (such as videos), it is now fashionable to promote advertisements (ads) together with the multimedia content. It is exhausted to find relevant ads to match the provided content manually, and hence, some automatic advertising techniques are developed. Since ads are usually hard to understand only according to its visual appearance due to the contained visual metaphor, some other modalities, such as the contained texts, should be exploited for understanding. To further improve user experience, it is necessary to understand both the topic and sentiment of the ads. This motivates us to develop a novel deep multimodal multitask framework to integrate multiple modalities to achieve effective topic and sentiment prediction simultaneously for ads understanding. In particular, our model first extracts multimodal information from ads and learn high-level and comparable representations. The visual metaphor of the ad is decoded in an unsupervised manner. The obtained representations are then fed into the proposed hierarchical multimodal attention modules to learn task-specific representations for final prediction. A multitask loss function is also designed to train both the topic and sentiment prediction models jointly in an end-to-end manner. We conduct extensive experiments on the latest and large advertisement dataset and achieve state-of-the-art performance for both prediction tasks. The obtained results could be utilized as a benchmark for ads understanding.

* 8 pages, 5 figures 

  Access Paper or Ask Questions