Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Sentiment Analysis": models, code, and papers

Automatic Aggregation by Joint Modeling of Aspects and Values

Jan 23, 2014
Christina Sauper, Regina Barzilay

We present a model for aggregation of product review snippets by joint aspect identification and sentiment analysis. Our model simultaneously identifies an underlying set of ratable aspects presented in the reviews of a product (e.g., sushi and miso for a Japanese restaurant) and determines the corresponding sentiment of each aspect. This approach directly enables discovery of highly-rated or inconsistent aspects of a product. Our generative model admits an efficient variational mean-field inference algorithm. It is also easily extensible, and we describe several modifications and their effects on model structure and inference. We test our model on two tasks, joint aspect identification and sentiment analysis on a set of Yelp reviews and aspect identification alone on a set of medical summaries. We evaluate the performance of the model on aspect identification, sentiment analysis, and per-word labeling accuracy. We demonstrate that our model outperforms applicable baselines by a considerable margin, yielding up to 32% relative error reduction on aspect identification and up to 20% relative error reduction on sentiment analysis.

* Journal Of Artificial Intelligence Research, Volume 46, pages 89-127, 2013 

#Coronavirus or #Chinesevirus?!: Understanding the negative sentiment reflected in Tweets with racist hashtags across the development of COVID-19

May 17, 2020
Xin Pei, Deval Mehta

Situated in the global outbreak of COVID-19, our study enriches the discussion concerning the emergent racism and xenophobia on social media. With big data extracted from Twitter, we focus on the analysis of negative sentiment reflected in tweets marked with racist hashtags, as racism and xenophobia are more likely to be delivered via the negative sentiment. Especially, we propose a stage-based approach to capture how the negative sentiment changes along with the three development stages of COVID-19, under which it transformed from a domestic epidemic into an international public health emergency and later, into the global pandemic. At each stage, sentiment analysis enables us to recognize the negative sentiment from tweets with racist hashtags, and keyword extraction allows for the discovery of themes in the expression of negative sentiment by these tweets. Under this public health crisis of human beings, this stage-based approach enables us to provide policy suggestions for the enactment of stage-specific intervention strategies to combat racism and xenophobia on social media in a more effective way.


MSCTD: A Multimodal Sentiment Chat Translation Dataset

Feb 28, 2022
Yunlong Liang, Fandong Meng, Jinan Xu, Yufeng Chen, Jie Zhou

Multimodal machine translation and textual chat translation have received considerable attention in recent years. Although the conversation in its natural form is usually multimodal, there still lacks work on multimodal machine translation in conversations. In this work, we introduce a new task named Multimodal Chat Translation (MCT), aiming to generate more accurate translations with the help of the associated dialogue history and visual context. To this end, we firstly construct a Multimodal Sentiment Chat Translation Dataset (MSCTD) containing 142,871 English-Chinese utterance pairs in 14,762 bilingual dialogues and 30,370 English-German utterance pairs in 3,079 bilingual dialogues. Each utterance pair, corresponding to the visual context that reflects the current conversational scene, is annotated with a sentiment label. Then, we benchmark the task by establishing multiple baseline systems that incorporate multimodal and sentiment features for MCT. Preliminary experiments on four language directions (English-Chinese and English-German) verify the potential of contextual and multimodal information fusion and the positive impact of sentiment on the MCT task. Additionally, as a by-product of the MSCTD, it also provides two new benchmarks on multimodal dialogue sentiment analysis. Our work can facilitate research on both multimodal chat translation and multimodal dialogue sentiment analysis.

* Accepted at ACL 2022 as a long paper of main conference. Code and data: 

News-based Business Sentiment and its Properties as an Economic Index

Oct 20, 2021
Kazuhiro Seki, Yusuke Ikuta, Yoichi Matsubayashi

This paper presents an approach to measuring business sentiment based on textual data. Business sentiment has been measured by traditional surveys, which are costly and time-consuming to conduct. To address the issues, we take advantage of daily newspaper articles and adopt a self-attention-based model to define a business sentiment index, named S-APIR, where outlier detection models are investigated to properly handle various genres of news articles. Moreover, we propose a simple approach to temporally analyzing how much any given event contributed to the predicted business sentiment index. To demonstrate the validity of the proposed approach, an extensive analysis is carried out on 12 years' worth of newspaper articles. The analysis shows that the S-APIR index is strongly and positively correlated with established survey-based index (up to correlation coefficient r=0.937) and that the outlier detection is effective especially for a general newspaper. Also, S-APIR is compared with a variety of economic indices, revealing the properties of S-APIR that it reflects the trend of the macroeconomy as well as the economic outlook and sentiment of economic agents. Moreover, to illustrate how S-APIR could benefit economists and policymakers, several events are analyzed with respect to their impacts on business sentiment over time.

* 40 pages, to be published in Information Processing and Management 

From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction

Jan 27, 2017
Victor Campos, Brendan Jou, Xavier Giro-i-Nieto

Visual multimedia have become an inseparable part of our digital social lives, and they often capture moments tied with deep affections. Automated visual sentiment analysis tools can provide a means of extracting the rich feelings and latent dispositions embedded in these media. In this work, we explore how Convolutional Neural Networks (CNNs), a now de facto computational machine learning tool particularly in the area of Computer Vision, can be specifically applied to the task of visual sentiment prediction. We accomplish this through fine-tuning experiments using a state-of-the-art CNN and via rigorous architecture analysis, we present several modifications that lead to accuracy improvements over prior art on a dataset of images from a popular social media platform. We additionally present visualizations of local patterns that the network learned to associate with image sentiment for insight into how visual positivity (or negativity) is perceived by the model.

* Accepted for publication in Image and Vision Computing. Models and source code available at 

If you've got it, flaunt it: Making the most of fine-grained sentiment annotations

Jan 30, 2021
Jeremy Barnes, Lilja Øvrelid, Erik Velldal

Fine-grained sentiment analysis attempts to extract sentiment holders, targets and polar expressions and resolve the relationship between them, but progress has been hampered by the difficulty of annotation. Targeted sentiment analysis, on the other hand, is a more narrow task, focusing on extracting sentiment targets and classifying their polarity.In this paper, we explore whether incorporating holder and expression information can improve target extraction and classification and perform experiments on eight English datasets. We conclude that jointly predicting target and polarity BIO labels improves target extraction, and that augmenting the input text with gold expressions generally improves targeted polarity classification. This highlights the potential importance of annotating expressions for fine-grained sentiment datasets. At the same time, our results show that performance of current models for predicting polar expressions is poor, hampering the benefit of this information in practice.

* To appear in EACL 2021 

Jointly Modeling Aspect and Sentiment with Dynamic Heterogeneous Graph Neural Networks

Apr 14, 2020
Shu Liu, Wei Li, Yunfang Wu, Qi Su, Xu Sun

Target-Based Sentiment Analysis aims to detect the opinion aspects (aspect extraction) and the sentiment polarities (sentiment detection) towards them. Both the previous pipeline and integrated methods fail to precisely model the innate connection between these two objectives. In this paper, we propose a novel dynamic heterogeneous graph to jointly model the two objectives in an explicit way. Both the ordinary words and sentiment labels are treated as nodes in the heterogeneous graph, so that the aspect words can interact with the sentiment information. The graph is initialized with multiple types of dependencies, and dynamically modified during real-time prediction. Experiments on the benchmark datasets show that our model outperforms the state-of-the-art models. Further analysis demonstrates that our model obtains significant performance gain on the challenging instances under multiple-opinion aspects and no-opinion aspect situations.


News Sentiment Analysis

Jul 05, 2020
Antony Samuels, John Mcgonical

Modern technological era has reshaped traditional lifestyle in several domains. The medium of publishing news and events has become faster with the advancement of Information Technology. IT has also been flooded with immense amounts of data, which is being published every minute of every day, by millions of users, in the shape of comments, blogs, news sharing through blogs, social media micro-blogging websites and many more. Manual traversal of such huge data is a challenging job, thus, sophisticated methods are acquired to perform this task automatically and efficiently. News reports events that comprise of emotions - good, bad, neutral. Sentiment analysis is utilized to investigate human emotions present in textual information. This paper presents a lexicon-based approach for sentiment analysis of news articles. The experiments have been performed on BBC news data set, which expresses the applicability and validation of the adopted approach.


Semantic Enrichment of Nigerian Pidgin English for Contextual Sentiment Classification

Mar 27, 2020
Wuraola Fisayo Oyewusi, Olubayo Adekanmbi, Olalekan Akinsande

Nigerian English adaptation, Pidgin, has evolved over the years through multi-language code switching, code mixing and linguistic adaptation. While Pidgin preserves many of the words in the normal English language corpus, both in spelling and pronunciation, the fundamental meaning of these words have changed significantly. For example,'ginger' is not a plant but an expression of motivation and 'tank' is not a container but an expression of gratitude. The implication is that the current approach of using direct English sentiment analysis of social media text from Nigeria is sub-optimal, as it will not be able to capture the semantic variation and contextual evolution in the contemporary meaning of these words. In practice, while many words in Nigerian Pidgin adaptation are the same as the standard English, the full English language based sentiment analysis models are not designed to capture the full intent of the Nigerian pidgin when used alone or code-mixed. By augmenting scarce human labelled code-changed text with ample synthetic code-reformatted text and meaning, we achieve significant improvements in sentiment scoring. Our research explores how to understand sentiment in an intrasentential code mixing and switching context where there has been significant word localization.This work presents a 300 VADER lexicon compatible Nigerian Pidgin sentiment tokens and their scores and a 14,000 gold standard Nigerian Pidgin tweets and their sentiments labels.

* Accepted to ICLR 2020 AfricaNLP workshop 

Sentiment and Emotion Classification of Epidemic Related Bilingual data from Social Media

May 04, 2021
Muhammad Zain Ali, Kashif Javed, Ehsan ul Haq, Anoshka Tariq

In recent years, sentiment analysis and emotion classification are two of the most abundantly used techniques in the field of Natural Language Processing (NLP). Although sentiment analysis and emotion classification are used commonly in applications such as analyzing customer reviews, the popularity of candidates contesting in elections, and comments about various sporting events; however, in this study, we have examined their application for epidemic outbreak detection. Early outbreak detection is the key to deal with epidemics effectively, however, the traditional ways of outbreak detection are time-consuming which inhibits prompt response from the respective departments. Social media platforms such as Twitter, Facebook, Instagram, etc. allow the users to express their thoughts related to different aspects of life, and therefore, serve as a substantial source of information in such situations. The proposed study exploits the bilingual (Urdu and English) data from Twitter and NEWS websites related to the dengue epidemic in Pakistan, and sentiment analysis and emotion classification are performed to acquire deep insights from the data set for gaining a fair idea related to an epidemic outbreak. Machine learning and deep learning algorithms have been used to train and implement the models for the execution of both tasks. The comparative performance of each model has been evaluated using accuracy, precision, recall, and f1-measure.