Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Sentiment Analysis": models, code, and papers

Context-aware Sentiment Word Identification: sentiword2vec

Dec 12, 2016
Yushi Yao, Guangjian Li

Traditional sentiment analysis often uses sentiment dictionary to extract sentiment information in text and classify documents. However, emerging informal words and phrases in user generated content call for analysis aware to the context. Usually, they have special meanings in a particular context. Because of its great performance in representing inter-word relation, we use sentiment word vectors to identify the special words. Based on the distributed language model word2vec, in this paper we represent a novel method about sentiment representation of word under particular context, to be detailed, to identify the words with abnormal sentiment polarity in long answers. Result shows the improved model shows better performance in representing the words with special meaning, while keep doing well in representing special idiomatic pattern. Finally, we will discuss the meaning of vectors representing in the field of sentiment, which may be different from general object-based conditions.

* 15 pages 

MACSA: A Multimodal Aspect-Category Sentiment Analysis Dataset with Multimodal Fine-grained Aligned Annotations

Jun 28, 2022
Hao Yang, Yanyan Zhao, Jianwei Liu, Yang Wu, Bing Qin

Multimodal fine-grained sentiment analysis has recently attracted increasing attention due to its broad applications. However, the existing multimodal fine-grained sentiment datasets most focus on annotating the fine-grained elements in text but ignore those in images, which leads to the fine-grained elements in visual content not receiving the full attention they deserve. In this paper, we propose a new dataset, the Multimodal Aspect-Category Sentiment Analysis (MACSA) dataset, which contains more than 21K text-image pairs. The dataset provides fine-grained annotations for both textual and visual content and firstly uses the aspect category as the pivot to align the fine-grained elements between the two modalities. Based on our dataset, we propose the Multimodal ACSA task and a multimodal graph-based aligned model (MGAM), which adopts a fine-grained cross-modal fusion method. Experimental results show that our method can facilitate the baseline comparison for future research on this corpus. We will make the dataset and code publicly available.


A Multi-Task Incremental Learning Framework with Category Name Embedding for Aspect-Category Sentiment Analysis

Oct 06, 2020
Zehui Dai, Cheng Peng, Huajie Chen, Yadong Ding

(T)ACSA tasks, including aspect-category sentiment analysis (ACSA) and targeted aspect-category sentiment analysis (TACSA), aims at identifying sentiment polarity on predefined categories. Incremental learning on new categories is necessary for (T)ACSA real applications. Though current multi-task learning models achieve good performance in (T)ACSA tasks, they suffer from catastrophic forgetting problems in (T)ACSA incremental learning tasks. In this paper, to make multi-task learning feasible for incremental learning, we proposed Category Name Embedding network (CNE-net). We set both encoder and decoder shared among all categories to weaken the catastrophic forgetting problem. Besides the origin input sentence, we applied another input feature, i.e., category name, for task discrimination. Our model achieved state-of-the-art on two (T)ACSA benchmark datasets. Furthermore, we proposed a dataset for (T)ACSA incremental learning and achieved the best performance compared with other strong baselines.

* EMNLP 2020 camera ready 

A novel approach to sentiment analysis in Persian using discourse and external semantic information

Jul 18, 2020
Rahim Dehkharghani, Hojjat Emami

Sentiment analysis attempts to identify, extract and quantify affective states and subjective information from various types of data such as text, audio, and video. Many approaches have been proposed to extract the sentiment of individuals from documents written in natural languages in recent years. The majority of these approaches have focused on English, while resource-lean languages such as Persian suffer from the lack of research work and language resources. Due to this gap in Persian, the current work is accomplished to introduce new methods for sentiment analysis which have been applied on Persian. The proposed approach in this paper is two-fold: The first one is based on classifier combination, and the second one is based on deep neural networks which benefits from word embedding vectors. Both approaches takes advantage of local discourse information and external knowledge bases, and also cover several language issues such as negation and intensification, andaddresses different granularity levels, namely word, aspect, sentence, phrase and document-levels. To evaluate the performance of the proposed approach, a Persian dataset is collected from Persian hotel reviews referred as hotel reviews. The proposed approach has been compared to counterpart methods based on the benchmark dataset. The experimental results approve the effectiveness of the proposed approach when compared to related works.

* 15 pages 

A Comprehensive Review of Visual-Textual Sentiment Analysis from Social Media Networks

Jul 05, 2022
Israa Khalaf Salman Al-Tameemi, Mohammad-Reza Feizi-Derakhshi, Saeed Pashazadeh, Mohammad Asadpour

Social media networks have become a significant aspect of people's lives, serving as a platform for their ideas, opinions and emotions. Consequently, automated sentiment analysis (SA) is critical for recognising people's feelings in ways that other information sources cannot. The analysis of these feelings revealed various applications, including brand evaluations, YouTube film reviews and healthcare applications. As social media continues to develop, people post a massive amount of information in different forms, including text, photos, audio and video. Thus, traditional SA algorithms have become limited, as they do not consider the expressiveness of other modalities. By including such characteristics from various material sources, these multimodal data streams provide new opportunities for optimising the expected results beyond text-based SA. Our study focuses on the forefront field of multimodal SA, which examines visual and textual data posted on social media networks. Many people are more likely to utilise this information to express themselves on these platforms. To serve as a resource for academics in this rapidly growing field, we introduce a comprehensive overview of textual and visual SA, including data pre-processing, feature extraction techniques, sentiment benchmark datasets, and the efficacy of multiple classification methodologies suited to each field. We also provide a brief introduction of the most frequently utilised data fusion strategies and a summary of existing research on visual-textual SA. Finally, we highlight the most significant challenges and investigate several important sentiment applications.


A Convolutional Neural Network for Aspect Sentiment Classification

Jul 04, 2018
Yongping Xing, Chuangbai Xiao, Yifei Wu, Ziming Ding

With the development of the Internet, natural language processing (NLP), in which sentiment analysis is an important task, became vital in information processing.Sentiment analysis includes aspect sentiment classification. Aspect sentiment can provide complete and in-depth results with increased attention on aspect-level. Different context words in a sentence influence the sentiment polarity of a sentence variably, and polarity varies based on the different aspects in a sentence. Take the sentence, 'I bought a new camera. The picture quality is amazing but the battery life is too short.'as an example. If the aspect is picture quality, then the expected sentiment polarity is 'positive', if the battery life aspect is considered, then the sentiment polarity should be 'negative'; therefore, aspect is important to consider when we explore aspect sentiment in the sentence. Recurrent neural network (RNN) is regarded as a good model to deal with natural language processing, and RNNs has get good performance on aspect sentiment classification including Target-Dependent LSTM (TD-LSTM) ,Target-Connection LSTM (TC-LSTM) (Tang, 2015a, b), AE-LSTM, AT-LSTM, AEAT-LSTM (Wang et al., 2016).There are also extensive literatures on sentiment classification utilizing convolutional neural network, but there is little literature on aspect sentiment classification using convolutional neural network. In our paper, we develop attention-based input layers in which aspect information is considered by input layer. We then incorporate attention-based input layers into convolutional neural network (CNN) to introduce context words information. In our experiment, incorporating aspect information into CNN improves the latter's aspect sentiment classification performance without using syntactic parser or external sentiment lexicons in a benchmark dataset from Twitter but get better performance compared with other models.


IUST at SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media Text using Deep Neural Networks and Linear Baselines

Jul 24, 2020
Soroush Javdan, Taha Shangipour ataei, Behrouz Minaei-Bidgoli

Sentiment Analysis is a well-studied field of Natural Language Processing. However, the rapid growth of social media and noisy content within them poses significant challenges in addressing this problem with well-established methods and tools. One of these challenges is code-mixing, which means using different languages to convey thoughts in social media texts. Our group, with the name of IUST(username: TAHA), participated at the SemEval-2020 shared task 9 on Sentiment Analysis for Code-Mixed Social Media Text, and we have attempted to develop a system to predict the sentiment of a given code-mixed tweet. We used different preprocessing techniques and proposed to use different methods that vary from NBSVM to more complicated deep neural network models. Our best performing method obtains an F1 score of 0.751 for the Spanish-English sub-task and 0.706 over the Hindi-English sub-task.


MultiBooked: A Corpus of Basque and Catalan Hotel Reviews Annotated for Aspect-level Sentiment Classification

Mar 22, 2018
Jeremy Barnes, Patrik Lambert, Toni Badia

While sentiment analysis has become an established field in the NLP community, research into languages other than English has been hindered by the lack of resources. Although much research in multi-lingual and cross-lingual sentiment analysis has focused on unsupervised or semi-supervised approaches, these still require a large number of resources and do not reach the performance of supervised approaches. With this in mind, we introduce two datasets for supervised aspect-level sentiment analysis in Basque and Catalan, both of which are under-resourced languages. We provide high-quality annotations and benchmarks with the hope that they will be useful to the growing community of researchers working on these languages.

* Accepted at LREC 2018 

Knowledge Graph Augmented Network Towards Multiview Representation Learning for Aspect-based Sentiment Analysis

Jan 13, 2022
Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, Hua Jin, Dacheng Tao

Aspect-based sentiment analysis (ABSA) is a fine-grained task of sentiment analysis. To better comprehend long complicated sentences and obtain accurate aspect-specific information, linguistic and commonsense knowledge are generally required in this task. However, most methods employ complicated and inefficient approaches to incorporate external knowledge, e.g., directly searching the graph nodes. Additionally, the complementarity between external knowledge and linguistic information has not been thoroughly studied. To this end, we propose a knowledge graph augmented network (KGAN), which aims to effectively incorporate external knowledge with explicitly syntactic and contextual information. In particular, KGAN captures the sentiment feature representations from multiple different perspectives, i.e., context-, syntax- and knowledge-based. First, KGAN learns the contextual and syntactic representations in parallel to fully extract the semantic features. Then, KGAN integrates the knowledge graphs into the embedding space, based on which the aspect-specific knowledge representations are further obtained via an attention mechanism. Last, we propose a hierarchical fusion module to complement these multiview representations in a local-to-global manner. Extensive experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN. Notably, with the help of the pretrained model of RoBERTa, KGAN achieves a new record of state-of-the-art performance.

* Under review 

Politics and Virality in the Time of Twitter: A Large-Scale Cross-Party Sentiment Analysis in Greece, Spain and United Kingdom

Feb 01, 2022
Dimosthenis Antypas, Alun Preece, Jose Camacho Collados

Social media has become extremely influential when it comes to policy making in modern societies especially in the western world (e.g., 48% of Europeans use social media every day or almost every day). Platforms such as Twitter allow users to follow politicians, thus making citizens more involved in political discussion. In the same vein, politicians use Twitter to express their opinions, debate among others on current topics and promote their political agenda aiming to influence voter behaviour. Previous studies have shown that tweets conveying negative sentiment are likely to be retweeted more frequently. In this paper, we attempt to analyse tweets from politicians from different countries and explore if their tweets follow the same trend. Utilising state-of-the-art pre-trained language models we performed sentiment analysis on multilingual tweets collected from members of parliament of Greece, Spain and United Kingdom, including devolved administrations. We achieved this by systematically exploring and analysing the differences between influential and less popular tweets. Our analysis indicates that politicians' negatively charged tweets spread more widely, especially in more recent times, and highlights interesting trends in the intersection of sentiment and popularity.

* 12 pages, 5 figures, for code and data used see