Assigning a positive or negative score to a word out of context (i.e. a word's prior polarity) is a challenging task for sentiment analysis. In the literature, various approaches based on SentiWordNet have been proposed. In this paper, we compare the most often used techniques together with newly proposed ones and incorporate all of them in a learning framework to see whether blending them can further improve the estimation of prior polarity scores. Using two different versions of SentiWordNet and testing regression and classification models across tasks and datasets, our learning approach consistently outperforms the single metrics, providing a new state-of-the-art approach in computing words' prior polarity for sentiment analysis. We conclude our investigation showing interesting biases in calculated prior polarity scores when word Part of Speech and annotator gender are considered.
Financial market forecasting is one of the most attractive practical applications of sentiment analysis. In this paper, we investigate the potential of using sentiment \emph{attitudes} (positive vs negative) and also sentiment \emph{emotions} (joy, sadness, etc.) extracted from financial news or tweets to help predict stock price movements. Our extensive experiments using the \emph{Granger-causality} test have revealed that (i) in general sentiment attitudes do not seem to Granger-cause stock price changes; and (ii) while on some specific occasions sentiment emotions do seem to Granger-cause stock price changes, the exhibited pattern is not universal and must be looked at on a case by case basis. Furthermore, it has been observed that at least for certain stocks, integrating sentiment emotions as additional features into the machine learning based market trend prediction model could improve its accuracy.
Aspect-based sentiment analysis (ABSA), which aims to identify fine-grained opinion polarity towards a specific aspect, is a challenging subtask of sentiment analysis (SA). In this paper, we construct an auxiliary sentence from the aspect and convert ABSA to a sentence-pair classification task, such as question answering (QA) and natural language inference (NLI). We fine-tune the pre-trained model from BERT and achieve new state-of-the-art results on SentiHood and SemEval-2014 Task 4 datasets.
In this work, we investigate the presence of occupational gender stereotypes in sentiment analysis models. Such a task has implications for reducing implicit biases in these models, which are being applied to an increasingly wide variety of downstream tasks. We release a new gender-balanced dataset of 800 sentences pertaining to specific professions and propose a methodology for using it as a test bench to evaluate sentiment analysis models. We evaluate the presence of occupational gender stereotypes in 3 different models using our approach, and explore their relationship with societal perceptions of occupations.
This paper focuses on Sentiment Analysis of Covid-19 related messages from the r/Canada and r/Unitedkingdom subreddits of Reddit. We apply manual annotation and three Machine Learning algorithms to analyze sentiments conveyed in those messages. We use VADER and TextBlob to label messages for Machine Learning experiments. Our results show that removal of shortest and longest messages improves VADER and TextBlob agreement on positive sentiments and F-score of sentiment classification by all the three algorithms
Tunisians on social media tend to express themselves in their local dialect using Latin script (TUNIZI). This raises an additional challenge to the process of exploring and recognizing online opinions. To date, very little work has addressed TUNIZI sentiment analysis due to scarce resources for training an automated system. In this paper, we focus on the Tunisian dialect sentiment analysis used on social media. Most of the previous work used machine learning techniques combined with handcrafted features. More recently, Deep Neural Networks were widely used for this task, especially for the English language. In this paper, we explore the importance of various unsupervised word representations (word2vec, BERT) and we investigate the use of Convolutional Neural Networks and Bidirectional Long Short-Term Memory. Without using any kind of handcrafted features, our experimental results on two publicly available datasets showed comparable performances to other languages.
Accurately grading open-ended assignments in large or massive open online courses (MOOCs) is non-trivial. Peer review is a promising solution but can be unreliable due to few reviewers and an unevaluated review form. To date, no work has 1) leveraged sentiment analysis in the peer-review process to inform or validate grades or 2) utilized aspect extraction to craft a review form from what students actually communicated. Our work utilizes, rather than discards, student data from review form comments to deliver better information to the instructor. In this work, we detail the process by which we create our domain-dependent lexicon and aspect-informed review form as well as our entire sentiment analysis algorithm which provides a fine-grained sentiment score from text alone. We end by analyzing validity and discussing conclusions from our corpus of over 6800 peer reviews from nine courses to understand the viability of sentiment in the classroom for increasing the information from and reliability of grading open-ended assignments in large courses.
Social Media has seen a tremendous growth in the last decade and is continuing to grow at a rapid pace. With such adoption, it is increasingly becoming a rich source of data for opinion mining and sentiment analysis. The detection and analysis of sentiment in social media is thus a valuable topic and attracts a lot of research efforts. Most of the earlier efforts focus on supervised learning approaches to solve this problem, which require expensive human annotations and therefore limits their practical use. In our work, we propose a semi-supervised approach to predict user-level sentiments for specific topics. We define and utilize a heterogeneous graph built from the social networks of the users with the knowledge that connected users in social networks typically share similar sentiments. Compared with the previous works, we have several novelties: (1) we incorporate the influences/authoritativeness of the users into the model, 2) we include comment-based and like-based user-user links to the graph, 3) we superimpose multiple heterogeneous graphs into one thereby allowing multiple types of links to exist between two users.
Cross-domain sentiment analysis has received significant attention in recent years, prompted by the need to combat the domain gap between different applications that make use of sentiment analysis. In this paper, we take a novel perspective on this task by exploring the role of external commonsense knowledge. We introduce a new framework, KinGDOM, which utilizes the ConceptNet knowledge graph to enrich the semantics of a document by providing both domain-specific and domain-general background concepts. These concepts are learned by training a graph convolutional autoencoder that leverages inter-domain concepts in a domain-invariant manner. Conditioning a popular domain-adversarial baseline method with these learned concepts helps improve its performance over state-of-the-art approaches, demonstrating the efficacy of our proposed framework.