Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Neural Educational Recommendation Engine (NERE)

Sep 21, 2018
Moin Nadeem, Dustin Stansbury, Shane Mooney

Quizlet is the most popular online learning tool in the United States, and is used by over 2/3 of high school students, and 1/2 of college students. With more than 95% of Quizlet users reporting improved grades as a result, the platform has become the de-facto tool used in millions of classrooms. In this paper, we explore the task of recommending suitable content for a student to study, given their prior interests, as well as what their peers are studying. We propose a novel approach, i.e. Neural Educational Recommendation Engine (NERE), to recommend educational content by leveraging student behaviors rather than ratings. We have found that this approach better captures social factors that are more aligned with learning. NERE is based on a recurrent neural network that includes collaborative and content-based approaches for recommendation, and takes into account any particular student's speed, mastery, and experience to recommend the appropriate task. We train NERE by jointly learning the user embeddings and content embeddings, and attempt to predict the content embedding for the final timestamp. We also develop a confidence estimator for our neural network, which is a crucial requirement for productionizing this model. We apply NERE to Quizlet's proprietary dataset, and present our results. We achieved an R^2 score of 0.81 in the content embedding space, and a recall score of 54% on our 100 nearest neighbors. This vastly exceeds the [email protected] score of 12% that a standard matrix-factorization approach provides. We conclude with a discussion on how NERE will be deployed, and position our work as one of the first educational recommender systems for the K-12 space.

  

Graph Augmentation-Free Contrastive Learning for Recommendation

Dec 16, 2021
Junliang Yu, Hongzhi Yin, Xin Xia, Lizhen Cui, Quoc Viet Hung Nguyen

Contrastive learning (CL) recently has received considerable attention in the field of recommendation, since it can greatly alleviate the data sparsity issue and improve recommendation performance in a self-supervised manner. A typical way to apply CL to recommendation is conducting edge/node dropout on the user-item bipartite graph to augment the graph data and then maximizing the correspondence between representations of the same user/item augmentations under a joint optimization setting. Despite the encouraging results brought by CL, however, what underlies the performance gains still remains unclear. In this paper, we first experimentally demystify that the uniformity of the learned user/item representation distributions on the unit hypersphere is closely related to the recommendation performance. Based on the experimental findings, we propose a graph augmentation-free CL method to simply adjust the uniformity by adding uniform noises to the original representations for data augmentations, and enhance recommendation from a geometric view. Specifically, the constant graph perturbation during training is not required in our method and hence the positive and negative samples for CL can be generated on-the-fly. The experimental results on three benchmark datasets demonstrate that the proposed method has distinct advantages over its graph augmentation-based counterparts in terms of both the ability to improve recommendation performance and the running/convergence speed. The code is released at https://github.com/Coder-Yu/QRec.

  

Distributed Online Learning in Social Recommender Systems

Jan 22, 2014
Cem Tekin, Simpson Zhang, Mihaela van der Schaar

In this paper, we consider decentralized sequential decision making in distributed online recommender systems, where items are recommended to users based on their search query as well as their specific background including history of bought items, gender and age, all of which comprise the context information of the user. In contrast to centralized recommender systems, in which there is a single centralized seller who has access to the complete inventory of items as well as the complete record of sales and user information, in decentralized recommender systems each seller/learner only has access to the inventory of items and user information for its own products and not the products and user information of other sellers, but can get commission if it sells an item of another seller. Therefore the sellers must distributedly find out for an incoming user which items to recommend (from the set of own items or items of another seller), in order to maximize the revenue from own sales and commissions. We formulate this problem as a cooperative contextual bandit problem, analytically bound the performance of the sellers compared to the best recommendation strategy given the complete realization of user arrivals and the inventory of items, as well as the context-dependent purchase probabilities of each item, and verify our results via numerical examples on a distributed data set adapted based on Amazon data. We evaluate the dependence of the performance of a seller on the inventory of items the seller has, the number of connections it has with the other sellers, and the commissions which the seller gets by selling items of other sellers to its users.

* Selected Topics in Signal Processing, IEEE Journal of , vol.8, no.4, pp.638,652, Aug. 2014 
  

Training Large-Scale News Recommenders with Pretrained Language Models in the Loop

Mar 05, 2021
Shitao Xiao, Zheng Liu, Yingxia Shao, Tao Di, Xing Xie

News recommendation calls for deep insights of news articles' underlying semantics. Therefore, pretrained language models (PLMs), like BERT and RoBERTa, may substantially contribute to the recommendation quality. However, it's extremely challenging to have news recommenders trained together with such big models: the learning of news recommenders requires intensive news encoding operations, whose cost is prohibitive if PLMs are used as the news encoder. In this paper, we propose a novel framework, {SpeedyFeed}, which efficiently trains PLMs-based news recommenders of superior quality. SpeedyFeed is highlighted for its light-weighted encoding pipeline, which gives rise to three major advantages. Firstly, it makes the intermedia results fully reusable for the training workflow, which removes most of the repetitive but redundant encoding operations. Secondly, it improves the data efficiency of the training workflow, where non-informative data can be eliminated from encoding. Thirdly, it further saves the cost by leveraging simplified news encoding and compact news representation. Extensive experiments show that SpeedyFeed leads to more than 100$\times$ acceleration of the training process, which enables big models to be trained efficiently and effectively over massive user data. The well-trained PLMs-based model from SpeedyFeed demonstrates highly competitive performance, where it outperforms the state-of-the-art news recommenders with significant margins. SpeedyFeed is also a model-agnostic framework, which is potentially applicable to a wide spectrum of content-based recommender systems; therefore, the whole framework is open-sourced to facilitate the progress in related areas.

  

Deep Adversarial Social Recommendation

May 30, 2019
Wenqi Fan, Tyler Derr, Yao Ma, Jianping Wang, Jiliang Tang, Qing Li

Recent years have witnessed rapid developments on social recommendation techniques for improving the performance of recommender systems due to the growing influence of social networks to our daily life. The majority of existing social recommendation methods unify user representation for the user-item interactions (item domain) and user-user connections (social domain). However, it may restrain user representation learning in each respective domain, since users behave and interact differently in the two domains, which makes their representations to be heterogeneous. In addition, most of traditional recommender systems can not efficiently optimize these objectives, since they utilize negative sampling technique which is unable to provide enough informative guidance towards the training during the optimization process. In this paper, to address the aforementioned challenges, we propose a novel deep adversarial social recommendation framework DASO. It adopts a bidirectional mapping method to transfer users' information between social domain and item domain using adversarial learning. Comprehensive experiments on two real-world datasets show the effectiveness of the proposed framework.

* Accepted by International Joint Conference on Artificial Intelligence (IJCAI 2019) 
  

Training Microsoft News Recommenders with Pretrained Language Models in the Loop

Feb 18, 2021
Shitao Xiao, Zheng Liu, Yingxia Shao, Tao Di, Xing Xie

News recommendation calls for deep insights of news articles' underlying semantics. Therefore, pretrained language models (PLMs), like BERT and RoBERTa, may substantially contribute to the recommendation quality. However, it's extremely challenging to have news recommenders trained together with such big models: the learning of news recommenders requires intensive news encoding operations, whose cost is prohibitive if PLMs are used as the news encoder. In this paper, we propose a novel framework, SpeedyFeed, which efficiently trains PLMs-based news recommenders of superior quality. SpeedyFeed is highlighted for its light-weighted encoding pipeline, which gives rise to three major advantages. Firstly, it makes the intermedia results fully reusable for the training workflow, which removes most of the repetitive but redundant encoding operations. Secondly, it improves the data efficiency of the training workflow, where non-informative data can be eliminated from encoding. Thirdly, it further saves the cost by leveraging simplified news encoding and compact news representation. SpeedyFeed leads to more than 100$\times$ acceleration of the training process, which enables big models to be trained efficiently and effectively over massive user data. The well-trained PLMs-based model significantly outperforms the state-of-the-art news recommenders in comprehensive offline experiments. It is applied to Microsoft News to empower the training of large-scale production models, which demonstrate highly competitive online performances. SpeedyFeed is also a model-agnostic framework, thus being potentially applicable to a wide spectrum of content-based recommender systems. We've made the source code open to the public so as to facilitate research and applications in related areas.

  

Faithfully Explainable Recommendation via Neural Logic Reasoning

Apr 16, 2021
Yaxin Zhu, Yikun Xian, Zuohui Fu, Gerard de Melo, Yongfeng Zhang

Knowledge graphs (KG) have become increasingly important to endow modern recommender systems with the ability to generate traceable reasoning paths to explain the recommendation process. However, prior research rarely considers the faithfulness of the derived explanations to justify the decision making process. To the best of our knowledge, this is the first work that models and evaluates faithfully explainable recommendation under the framework of KG reasoning. Specifically, we propose neural logic reasoning for explainable recommendation (LOGER) by drawing on interpretable logical rules to guide the path reasoning process for explanation generation. We experiment on three large-scale datasets in the e-commerce domain, demonstrating the effectiveness of our method in delivering high-quality recommendations as well as ascertaining the faithfulness of the derived explanation.

* Accepted in NAACL 2021 
  

SANST: A Self-Attentive Network for Next Point-of-Interest Recommendation

Jan 22, 2020
Qianyu Guo, Jianzhong Qi

Next point-of-interest (POI) recommendation aims to offer suggestions on which POI to visit next, given a user's POI visit history. This problem has a wide application in the tourism industry, and it is gaining an increasing interest as more POI check-in data become available. The problem is often modeled as a sequential recommendation problem to take advantage of the sequential patterns of user check-ins, e.g., people tend to visit Central Park after The Metropolitan Museum of Art in New York City. Recently, self-attentive networks have been shown to be both effective and efficient in general sequential recommendation problems, e.g., to recommend products, video games, or movies. Directly adopting self-attentive networks for next POI recommendation, however, may produce sub-optimal recommendations. This is because vanilla self-attentive networks do not consider the spatial and temporal patterns of user check-ins, which are two critical features in next POI recommendation. To address this limitation, in this paper, we propose a model named SANST that incorporates spatio-temporal patterns of user check-ins into self-attentive networks. To incorporate the spatial patterns, we encode the relative positions of POIs into their embeddings before feeding the embeddings into the self-attentive network. To incorporate the temporal patterns, we discretize the time of POI check-ins and model the temporal relationship between POI check-ins by a relation-aware self-attention module. We evaluate the performance of our SANST model with three real-world datasets. The results show that SANST consistently outperforms the state-of-theart models, and the advantage in [email protected] is up to 13.65%.

  

SeER: An Explainable Deep Learning MIDI-based Hybrid Song Recommender System

Jun 25, 2019
Khalil Damak, Olfa Nasraoui

State of the art music recommender systems mainly rely on either Matrix factorization-based collaborative filtering approaches or deep learning architectures. Deep learning models usually use metadata for content-based filtering or predict the next user interaction by learning from temporal sequences of user actions. Despite advances in deep learning for song recommendation, none has taken advantage of the sequential nature of songs by learning sequence models that are based on content. Aside from the importance of prediction accuracy, other significant aspects are important, such as explainability and solving the cold start problem. In this work, we propose a hybrid deep learning structure, called "SeER", that uses collaborative filtering (CF) and deep learning sequence models on the MIDI content of songs for recommendation in order to provide more accurate personalized recommendations; solve the item cold start problem; and generate a relevant explanation for a song recommendation. Our evaluation experiments show promising results compared to state of the art baseline and hybrid song recommender systems in terms of ranking evaluation.

* 5 pages, 4 figures 
  

Integrating Topic Models and Latent Factors for Recommendation

Nov 05, 2016
Danis J. Wilson, Wei Zhang

The research of personalized recommendation techniques today has mostly parted into two mainstream directions, i.e., the factorization-based approaches and topic models. Practically, they aim to benefit from the numerical ratings and textual reviews, correspondingly, which compose two major information sources in various real-world systems. However, although the two approaches are supposed to be correlated for their same goal of accurate recommendation, there still lacks a clear theoretical understanding of how their objective functions can be mathematically bridged to leverage the numerical ratings and textual reviews collectively, and why such a bridge is intuitively reasonable to match up their learning procedures for the rating prediction and top-N recommendation tasks, respectively. In this work, we exposit with mathematical analysis that, the vector-level randomization functions to coordinate the optimization objectives of factorizational and topic models unfortunately do not exist at all, although they are usually pre-assumed and intuitively designed in the literature. Fortunately, we also point out that one can avoid the seeking of such a randomization function by optimizing a Joint Factorizational Topic (JFT) model directly. We apply our JFT model to restaurant recommendation, and study its performance in both normal and cross-city recommendation scenarios, where the latter is an extremely difficult task for its inherent cold-start nature. Experimental results on real-world datasets verified the appealing performance of our approach against previous methods, on both rating prediction and top-N recommendation tasks.

* 11 pages, 3 figures, version 2 
  
<<
41
42
43
44
45
46
47
48
49
50
>>