Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Learning Heterogeneous Temporal Patterns of User Preference for Timely Recommendation

Apr 29, 2021
Junsu Cho, Dongmin Hyun, SeongKu Kang, Hwanjo Yu

Recommender systems have achieved great success in modeling user's preferences on items and predicting the next item the user would consume. Recently, there have been many efforts to utilize time information of users' interactions with items to capture inherent temporal patterns of user behaviors and offer timely recommendations at a given time. Existing studies regard the time information as a single type of feature and focus on how to associate it with user preferences on items. However, we argue they are insufficient for fully learning the time information because the temporal patterns of user preference are usually heterogeneous. A user's preference for a particular item may 1) increase periodically or 2) evolve over time under the influence of significant recent events, and each of these two kinds of temporal pattern appears with some unique characteristics. In this paper, we first define the unique characteristics of the two kinds of temporal pattern of user preference that should be considered in time-aware recommender systems. Then we propose a novel recommender system for timely recommendations, called TimelyRec, which jointly learns the heterogeneous temporal patterns of user preference considering all of the defined characteristics. In TimelyRec, a cascade of two encoders captures the temporal patterns of user preference using a proposed attention module for each encoder. Moreover, we introduce an evaluation scenario that evaluates the performance on predicting an interesting item and when to recommend the item simultaneously in top-K recommendation (i.e., item-timing recommendation). Our extensive experiments on a scenario for item recommendation and the proposed scenario for item-timing recommendation on real-world datasets demonstrate the superiority of TimelyRec and the proposed attention modules.

* Accepted to The Web Conference (WWW) 2021 

Bias Disparity in Collaborative Recommendation: Algorithmic Evaluation and Comparison

Aug 02, 2019
Masoud Mansoury, Bamshad Mobasher, Robin Burke, Mykola Pechenizkiy

Research on fairness in machine learning has been recently extended to recommender systems. One of the factors that may impact fairness is bias disparity, the degree to which a group's preferences on various item categories fail to be reflected in the recommendations they receive. In some cases biases in the original data may be amplified or reversed by the underlying recommendation algorithm. In this paper, we explore how different recommendation algorithms reflect the tradeoff between ranking quality and bias disparity. Our experiments include neighborhood-based, model-based, and trust-aware recommendation algorithms.

* Workshop on Recommendation in Multi-Stakeholder Environments (RMSE) at ACM RecSys 2019, Copenhagen, Denmark 

Poisoning Deep Learning based Recommender Model in Federated Learning Scenarios

Apr 26, 2022
Dazhong Rong, Qinming He, Jianhai Chen

Various attack methods against recommender systems have been proposed in the past years, and the security issues of recommender systems have drawn considerable attention. Traditional attacks attempt to make target items recommended to as many users as possible by poisoning the training data. Benifiting from the feature of protecting users' private data, federated recommendation can effectively defend such attacks. Therefore, quite a few works have devoted themselves to developing federated recommender systems. For proving current federated recommendation is still vulnerable, in this work we probe to design attack approaches targeting deep learning based recommender models in federated learning scenarios. Specifically, our attacks generate poisoned gradients for manipulated malicious users to upload based on two strategies (i.e., random approximation and hard user mining). Extensive experiments show that our well-designed attacks can effectively poison the target models, and the attack effectiveness sets the state-of-the-art.

* This paper has been accepted by the 31st International Joint Conference on Artificial Intelligence (IJCAI-22, Main Track) 

On the Relationship between Counterfactual Explainer and Recommender: A Framework and Preliminary Observations

Jul 09, 2022
Gang Liu, Zhihan Zhang, Zheng Ning, Meng Jiang

Recommender systems employ machine learning models to learn from historical data to predict the preferences of users. Deep neural network (DNN) models such as neural collaborative filtering (NCF) are increasingly popular. However, the tangibility and trustworthiness of the recommendations are questionable due to the complexity and lack of explainability of the models. To enable explainability, recent techniques such as ACCENT and FIA are looking for counterfactual explanations that are specific historical actions of a user, the removal of which leads to a change to the recommendation result. In this work, we present a general framework for both DNN and non-DNN models so that the counterfactual explainers all belong to it with specific choices of components. This framework first estimates the influence of a certain historical action after its removal and then uses search algorithms to find the minimal set of such actions for the counterfactual explanation. With this framework, we are able to investigate the relationship between the explainers and recommenders. We empirically study two recommender models (NCF and Factorization Machine) and two datasets (MovieLens and Yelp). We analyze the relationship between the performance of the recommender and the quality of the explainer. We observe that with standard evaluation metrics, the explainers deliver worse performance when the recommendations are more accurate. This indicates that having good explanations to correct predictions is harder than having them to wrong predictions. The community needs more fine-grained evaluation metrics to measure the quality of counterfactual explanations to recommender systems.

* Accepted by KDD 2022 Workshop on Data Science and Artificial Intelligence for Responsible Recommendations (DS4RRS) 

Influence Function based Data Poisoning Attacks to Top-N Recommender Systems

Feb 19, 2020
Minghong Fang, Neil Zhenqiang Gong, Jia Liu

Recommender system is an essential component of web services to engage users. Popular recommender systems model user preferences and item properties using a large amount of crowdsourced user-item interaction data, e.g., rating scores; then top-$N$ items that match the best with a user's preference are recommended to the user. In this work, we show that an attacker can launch a data poisoning attack to a recommender system to make recommendations as the attacker desires via injecting fake users with carefully crafted user-item interaction data. Specifically, an attacker can trick a recommender system to recommend a target item to as many normal users as possible. We focus on matrix factorization based recommender systems because they have been widely deployed in industry. Given the number of fake users the attacker can inject, we formulate the crafting of rating scores for the fake users as an optimization problem. However, this optimization problem is challenging to solve as it is a non-convex integer programming problem. To address the challenge, we develop several techniques to approximately solve the optimization problem. For instance, we leverage influence function to select a subset of normal users who are influential to the recommendations and solve our formulated optimization problem based on these influential users. Our results show that our attacks are effective and outperform existing methods.

* Accepted by WWW 2020; This is technical report version 

Reinforcement Learning for Strategic Recommendations

Sep 15, 2020
Georgios Theocharous, Yash Chandak, Philip S. Thomas, Frits de Nijs

Strategic recommendations (SR) refer to the problem where an intelligent agent observes the sequential behaviors and activities of users and decides when and how to interact with them to optimize some long-term objectives, both for the user and the business. These systems are in their infancy in the industry and in need of practical solutions to some fundamental research challenges. At Adobe research, we have been implementing such systems for various use-cases, including points of interest recommendations, tutorial recommendations, next step guidance in multi-media editing software, and ad recommendation for optimizing lifetime value. There are many research challenges when building these systems, such as modeling the sequential behavior of users, deciding when to intervene and offer recommendations without annoying the user, evaluating policies offline with high confidence, safe deployment, non-stationarity, building systems from passive data that do not contain past recommendations, resource constraint optimization in multi-user systems, scaling to large and dynamic actions spaces, and handling and incorporating human cognitive biases. In this paper we cover various use-cases and research challenges we solved to make these systems practical.


FEBR: Expert-Based Recommendation Framework for beneficial and personalized content

Jul 17, 2021
Mohamed Lechiakh, Alexandre Maurer

So far, most research on recommender systems focused on maintaining long-term user engagement and satisfaction, by promoting relevant and personalized content. However, it is still very challenging to evaluate the quality and the reliability of this content. In this paper, we propose FEBR (Expert-Based Recommendation Framework), an apprenticeship learning framework to assess the quality of the recommended content on online platforms. The framework exploits the demonstrated trajectories of an expert (assumed to be reliable) in a recommendation evaluation environment, to recover an unknown utility function. This function is used to learn an optimal policy describing the expert's behavior, which is then used in the framework to provide high-quality and personalized recommendations. We evaluate the performance of our solution through a user interest simulation environment (using RecSim). We simulate interactions under the aforementioned expert policy for videos recommendation, and compare its efficiency with standard recommendation methods. The results show that our approach provides a significant gain in terms of content quality, evaluated by experts and watched by users, while maintaining almost the same watch time as the baseline approaches.


Modeling and Counteracting Exposure Bias in Recommender Systems

Jan 01, 2020
Sami Khenissi, Olfa Nasraoui

What we discover and see online, and consequently our opinions and decisions, are becoming increasingly affected by automated machine learned predictions. Similarly, the predictive accuracy of learning machines heavily depends on the feedback data that we provide them. This mutual influence can lead to closed-loop interactions that may cause unknown biases which can be exacerbated after several iterations of machine learning predictions and user feedback. Machine-caused biases risk leading to undesirable social effects ranging from polarization to unfairness and filter bubbles. In this paper, we study the bias inherent in widely used recommendation strategies such as matrix factorization. Then we model the exposure that is borne from the interaction between the user and the recommender system and propose new debiasing strategies for these systems. Finally, we try to mitigate the recommendation system bias by engineering solutions for several state of the art recommender system models. Our results show that recommender systems are biased and depend on the prior exposure of the user. We also show that the studied bias iteratively decreases diversity in the output recommendations. Our debiasing method demonstrates the need for alternative recommendation strategies that take into account the exposure process in order to reduce bias. Our research findings show the importance of understanding the nature of and dealing with bias in machine learning models such as recommender systems that interact directly with humans, and are thus causing an increasing influence on human discovery and decision making

* 9 figures and one table. The paper has 5 pages 

Partially Observable Markov Decision Process for Recommender Systems

Sep 01, 2016
Zhongqi Lu, Qiang Yang

We report the "Recurrent Deterioration" (RD) phenomenon observed in online recommender systems. The RD phenomenon is reflected by the trend of performance degradation when the recommendation model is always trained based on users' feedbacks of the previous recommendations. There are several reasons for the recommender systems to encounter the RD phenomenon, including the lack of negative training data and the evolution of users' interests, etc. Motivated to tackle the problems causing the RD phenomenon, we propose the POMDP-Rec framework, which is a neural-optimized Partially Observable Markov Decision Process algorithm for recommender systems. We show that the POMDP-Rec framework effectively uses the accumulated historical data from real-world recommender systems and automatically achieves comparable results with those models fine-tuned exhaustively by domain exports on public datasets.


Measuring the Business Value of Recommender Systems

Aug 26, 2019
Dietmar Jannach, Michael Jugovac

Recommender Systems are nowadays successfully used by all major web sites (from e-commerce to social media) to filter content and make suggestions in a personalized way. Academic research largely focuses on the value of recommenders for consumers, e.g., in terms of reduced information overload. To what extent and in which ways recommender systems create business value is, however, much less clear, and the literature on the topic is scattered. In this research commentary, we review existing publications on field tests of recommender systems and report which business-related performance measures were used in such real-world deployments. We summarize common challenges of measuring the business value in practice and critically discuss the value of algorithmic improvements and offline experiments as commonly done in academic environments. Overall, our review indicates that various open questions remain both regarding the realistic quantification of the business effects of recommenders and the performance assessment of recommendation algorithms in academia.

* Removed subtitled