Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Next-item Recommendations in Short Sessions

Jul 15, 2021
Wenzhuo Song, Shoujin Wang, Yan Wang, Shengsheng Wang

The changing preferences of users towards items trigger the emergence of session-based recommender systems (SBRSs), which aim to model the dynamic preferences of users for next-item recommendations. However, most of the existing studies on SBRSs are based on long sessions only for recommendations, ignoring short sessions, though short sessions, in fact, account for a large proportion in most of the real-world datasets. As a result, the applicability of existing SBRSs solutions is greatly reduced. In a short session, quite limited contextual information is available, making the next-item recommendation very challenging. To this end, in this paper, inspired by the success of few-shot learning (FSL) in effectively learning a model with limited instances, we formulate the next-item recommendation as an FSL problem. Accordingly, following the basic idea of a representative approach for FSL, i.e., meta-learning, we devise an effective SBRS called INter-SEssion collaborative Recommender netTwork (INSERT) for next-item recommendations in short sessions. With the carefully devised local module and global module, INSERT is able to learn an optimal preference representation of the current user in a given short session. In particular, in the global module, a similar session retrieval network (SSRN) is designed to find out the sessions similar to the current short session from the historical sessions of both the current user and other users, respectively. The obtained similar sessions are then utilized to complement and optimize the preference representation learned from the current short session by the local module for more accurate next-item recommendations in this short session. Extensive experiments conducted on two real-world datasets demonstrate the superiority of our proposed INSERT over the state-of-the-art SBRSs when making next-item recommendations in short sessions.

* This paper has been accepted by ACM RecSys'21 
  

A Tech Hybrid-Recommendation Engine and Personalized Notification: An integrated tool to assist users through Recommendations (Project ATHENA)

Feb 13, 2022
Lordjette Leigh M. Lecaros, Concepcion L. Khan

Project ATHENA aims to develop an application to address information overload, primarily focused on Recommendation Systems (RSs) with the personalization and user experience design of a modern system. Two machine learning (ML) algorithms were used: (1) TF-IDF for Content-based filtering (CBF); (2) Classification with Matrix Factorization- Singular Value Decomposition(SVD) applied with Collaborative filtering (CF) and mean (normalization) for prediction accuracy of the CF. Data sampling in academic Research and Development of Philippine Council for Agriculture, Aquatic, and Natural Resources Research and Development (PCAARRD) e-Library and Project SARAI publications plus simulated data used as training sets to generate a recommendation of items that uses the three RS filtering (CF, CBF, and personalized version of item recommendations). Series of Testing and TAM performed and discussed. Findings allow users to engage in online information and quickly evaluate retrieved items produced by the application. Compatibility-testing (CoT) shows the application is compatible with all major browsers and mobile-friendly. Performance-testing (PT) recommended v-parameter specs and TAM evaluations results indicate strongly associated with overall positive feedback, thoroughly enough to address the information-overload problem as the core of the paper. A modular architecture presented addressing the information overload, primarily focused on RSs with the personalization and design of modern systems. Developers utilized Two ML algorithms and prototyped a simplified version of the architecture. Series of testing (CoT and PT) and evaluations with TAM were performed and discussed. Project ATHENA added a UX feature design of a modern system.

* 15 pages 
  

Exploring Lottery Ticket Hypothesis in Media Recommender Systems

Aug 02, 2021
Yanfang Wang, Yongduo Sui, Xiang Wang, Zhenguang Liu, Xiangnan He

Media recommender systems aim to capture users' preferences and provide precise personalized recommendation of media content. There are two critical components in the common paradigm of modern recommender models: (1) representation learning, which generates an embedding for each user and item; and (2) interaction modeling, which fits user preferences towards items based on their representations. Despite of great success, when a great amount of users and items exist, it usually needs to create, store, and optimize a huge embedding table, where the scale of model parameters easily reach millions or even larger. Hence, it naturally raises questions about the heavy recommender models: Do we really need such large-scale parameters? We get inspirations from the recently proposed lottery ticket hypothesis (LTH), which argues that the dense and over-parameterized model contains a much smaller and sparser sub-model that can reach comparable performance to the full model. In this paper, we extend LTH to media recommender systems, aiming to find the winning tickets in deep recommender models. To the best of our knowledge, this is the first work to study LTH in media recommender systems. With MF and LightGCN as the backbone models, we found that there widely exist winning tickets in recommender models. On three media convergence datasets -- Yelp2018, TikTok and Kwai, the winning tickets can achieve comparable recommendation performance with only 29%~48%, 7%~10% and 3%~17% of parameters, respectively.

  

Contrastive Learning for Recommender System

Jan 05, 2021
Zhuang Liu, Yunpu Ma, Yuanxin Ouyang, Zhang Xiong

Recommender systems, which analyze users' preference patterns to suggest potential targets, are indispensable in today's society. Collaborative Filtering (CF) is the most popular recommendation model. Specifically, Graph Neural Network (GNN) has become a new state-of-the-art for CF. In the GNN-based recommender system, message dropout is usually used to alleviate the selection bias in the user-item bipartite graph. However, message dropout might deteriorate the recommender system's performance due to the randomness of dropping out the outgoing messages based on the user-item bipartite graph. To solve this problem, we propose a graph contrastive learning module for a general recommender system that learns the embeddings in a self-supervised manner and reduces the randomness of message dropout. Besides, many recommender systems optimize models with pairwise ranking objectives, such as the Bayesian Pairwise Ranking (BPR) based on a negative sampling strategy. However, BPR has the following problems: suboptimal sampling and sample bias. We introduce a new debiased contrastive loss to solve these problems, which provides sufficient negative samples and applies a bias correction probability to alleviate the sample bias. We integrate the proposed framework, including graph contrastive module and debiased contrastive module with several Matrix Factorization(MF) and GNN-based recommendation models. Experimental results on three public benchmarks demonstrate the effectiveness of our framework.

* arXiv admin note: text overlap with arXiv:1905.08108 by other authors 
  

Solving Cold-Start Problem in Large-scale Recommendation Engines: A Deep Learning Approach

Nov 16, 2016
Jianbo Yuan, Walid Shalaby, Mohammed Korayem, David Lin, Khalifeh AlJadda, Jiebo Luo

Collaborative Filtering (CF) is widely used in large-scale recommendation engines because of its efficiency, accuracy and scalability. However, in practice, the fact that recommendation engines based on CF require interactions between users and items before making recommendations, make it inappropriate for new items which haven't been exposed to the end users to interact with. This is known as the cold-start problem. In this paper we introduce a novel approach which employs deep learning to tackle this problem in any CF based recommendation engine. One of the most important features of the proposed technique is the fact that it can be applied on top of any existing CF based recommendation engine without changing the CF core. We successfully applied this technique to overcome the item cold-start problem in Careerbuilder's CF based recommendation engine. Our experiments show that the proposed technique is very efficient to resolve the cold-start problem while maintaining high accuracy of the CF recommendations.

* in Big Data, IEEE International Conference on, 2016 
  

Deep Meta-learning in Recommendation Systems: A Survey

Jun 09, 2022
Chunyang Wang, Yanmin Zhu, Haobing Liu, Tianzi Zang, Jiadi Yu, Feilong Tang

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

  

KuaiRec: A Fully-observed Dataset for Recommender Systems

Feb 22, 2022
Chongming Gao, Shijun Li, Wenqiang Lei, Biao Li, Peng Jiang, Jiawei Chen, Xiangnan He, Jiaxin Mao, Tat-Seng Chua

Recommender systems are usually developed and evaluated on the historical user-item logs. However, most offline recommendation datasets are highly sparse and contain various biases, which hampers the evaluation of recommendation policies. Existing efforts aim to improve the data quality by collecting users' preferences on randomly selected items (e.g., Yahoo! and Coat). However, they still suffer from the high variance issue caused by the sparsely observed data. To fundamentally solve the problem, we present KuaiRec, a fully-observed dataset collected from the social video-sharing mobile App, Kuaishou. The feedback of 1,411 users on almost all of the 3,327 videos is explicitly observed. To the best of our knowledge, this is the first real-world fully-observed dataset with millions of user-item interactions in recommendation. To demonstrate the advantage of KuaiRec, we leverage it to explore the key questions in evaluating conversational recommender systems. The experimental results show that two factors in traditional partially-observed data -- the data density and the exposure bias -- greatly affect the evaluation results. This entails the significance of our fully-observed data in researching many directions in recommender systems, e.g., the unbiased recommendation, interactive/conversational recommendation, and evaluation. We release the dataset and the pipeline implementation for evaluation at https://chongminggao.github.io/KuaiRec/.

* 11 pages, 7 figures 
  

Big-Five, MPTI, Eysenck or HEXACO: The Ideal Personality Model for Personality-aware Recommendation Systems

Jun 06, 2021
Sahraoui Dhelim, Liming Luke Chen, Nyothiri Aung, Wenyin Zhang, Huansheng Ning

Personality-aware recommendation systems have been proven to achieve high accuracy compared to conventional recommendation systems. In addition to that, personality-aware recommendation systems could help alleviate cold start and data sparsity problems. Most of the existing works use Big-Five personality model to represent the user's personality, this is due to the popularity of Big-Five model in the literature of psychology. However, from personality computing perspective, the choice of the most suitable personality model that satisfy the requirements of the recommendation application and the recommended content type still needs further investigation. In this paper, we study and compare four personality-aware recommendation systems based on different personality models, namely Big-Five, Eysenck and HEXACO from the personality traits theory, and Myers-Briggs Type Indicator (MPTI) from the personality types theory. Following that, we propose a hybrid personality model for recommendation that takes advantage of the personality traits models, as well as the personality types models. Through extensive experiments on recommendation dataset, we prove the efficiency of the proposed model, especially in cold start settings.

  

Exploiting Synergy Between Ontologies and Recommender Systems

Apr 08, 2002
Stuart E. Middleton, Harith Alani, David C. De Roure

Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial information is available early on upon which to base recommendations. Semantic knowledge structures, such as ontologies, can provide valuable domain knowledge and user information. However, acquiring such knowledge and keeping it up to date is not a trivial task and user interests are particularly difficult to acquire and maintain. This paper investigates the synergy between a web-based research paper recommender system and an ontology containing information automatically extracted from departmental databases available on the web. The ontology is used to address the recommender systems cold-start problem. The recommender system addresses the ontology's interest-acquisition problem. An empirical evaluation of this approach is conducted and the performance of the integrated systems measured.

* Semantic web conference, WWW2002, 10 pages 
  

A News Recommender System Considering Temporal Dynamics and Diversity

Mar 23, 2021
Shaina Raza

In a news recommender system, a reader's preferences change over time. Some preferences drift quite abruptly (short-term preferences), while others change over a longer period of time (long-term preferences). Although the existing news recommender systems consider the reader's full history, they often ignore the dynamics in the reader's behavior. Thus, they cannot meet the demand of the news readers for their time-varying preferences. In addition, the state-of-the-art news recommendation models are often focused on providing accurate predictions, which can work well in traditional recommendation scenarios. However, in a news recommender system, diversity is essential, not only to keep news readers engaged, but also to play a key role in a democratic society. In this PhD dissertation, our goal is to build a news recommender system to address these two challenges. Our system should be able to: (i) accommodate the dynamics in reader behavior; and (ii) consider both accuracy and diversity in the design of the recommendation model. Our news recommender system can also work for unprofiled, anonymous and short-term readers, by leveraging the rich side information of the news items and by including the implicit feedback in our model. We evaluate our model with multiple evaluation measures (both accuracy and diversity-oriented metrics) to demonstrate the effectiveness of our methods.

* A doctoral symposium 
  
<<
15
16
17
18
19
20
21
22
23
24
25
26
27
>>