Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

DEUX: An Attribute-Guided Framework for Sociable Recommendation Dialog Systems

Apr 16, 2021
Yu Li, Shirley Anugrah Hayati, Weiyan Shi, Zhou Yu

It is important for sociable recommendation dialog systems to perform as both on-task content and social content to engage users and gain their favor. In addition to understand the user preferences and provide a satisfying recommendation, such systems must be able to generate coherent and natural social conversations to the user. Traditional dialog state tracking cannot be applied to such systems because it does not track the attributes in the social content. To address this challenge, we propose DEUX, a novel attribute-guided framework to create better user experiences while accomplishing a movie recommendation task. DEUX has a module that keeps track of the movie attributes (e.g., favorite genres, actors,etc.) in both user utterances and system responses. This allows the system to introduce new movie attributes in its social content. Then, DEUX has multiple values for the same attribute type which suits the recommendation task since a user may like multiple genres, for instance. Experiments suggest that DEUX outperforms all the baselines on being more consistent, fitting the user preferences better, and providing a more engaging chat experience. Our approach can be used for any similar problems of sociable task-oriented dialog system.

  Access Paper or Ask Questions

RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems

Aug 25, 2018
Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie, Minyi Guo

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

* CIKM 2018 

  Access Paper or Ask Questions

Graph Based Recommendations: From Data Representation to Feature Extraction and Application

Jul 05, 2017
Amit Tiroshi, Tsvi Kuflik, Shlomo Berkovsky, Mohamed Ali Kaafar

Modeling users for the purpose of identifying their preferences and then personalizing services on the basis of these models is a complex task, primarily due to the need to take into consideration various explicit and implicit signals, missing or uncertain information, contextual aspects, and more. In this study, a novel generic approach for uncovering latent preference patterns from user data is proposed and evaluated. The approach relies on representing the data using graphs, and then systematically extracting graph-based features and using them to enrich the original user models. The extracted features encapsulate complex relationships between users, items, and metadata. The enhanced user models can then serve as an input to any recommendation algorithm. The proposed approach is domain-independent (demonstrated on data from movies, music, and business recommender systems), and is evaluated using several state-of-the-art machine learning methods, on different recommendation tasks, and using different evaluation metrics. The results show a unanimous improvement in the recommendation accuracy across tasks and domains. In addition, the evaluation provides a deeper analysis regarding the performance of the approach in special scenarios, including high sparsity and variability of ratings.

  Access Paper or Ask Questions

Recommendation System based on Semantic Scholar Mining and Topic modeling: A behavioral analysis of researchers from six conferences

Dec 20, 2018
Hamed Jelodar, Yongli Wang, Mahdi Rabbani, Ru-xin Zhao, Seyedvalyallah Ayobi, Peng Hu, Isma Masood

Recommendation systems have an important place to help online users in the internet society. Recommendation Systems in computer science are of very practical use these days in various aspects of the Internet portals, such as social networks, and library websites. There are several approaches to implement recommendation systems, Latent Dirichlet Allocation (LDA) is one the popular techniques in Topic Modeling. Recently, researchers have proposed many approaches based on Recommendation Systems and LDA. According to importance of the subject, in this paper we discover the trends of the topics and find relationship between LDA topics and Scholar-Context-documents. In fact, We apply probabilistic topic modeling based on Gibbs sampling algorithms for a semantic mining from six conference publications in computer science from DBLP dataset. According to our experimental results, our semantic framework can be effective to help organizations to better organize these conferences and cover future research topics.

  Access Paper or Ask Questions

Learning Reinforced Dynamic Representations for Sequential Recommendation

Dec 06, 2021
Weiqi Shao, Xu Chen, Jiashu Zhao, Long Xia, Dawei Yin

Recently, sequential recommendation systems are important in solving the information overload in many online services. Current methods in sequential recommendation focus on learning a fixed number of representations for each user at any time, with a single representation or multi-interest representations for the user. However, when a user is exploring items on an e-commerce recommendation system, the number of this user's interests may change overtime (e.g. increase/reduce one interest), affected by the user's evolving self needs. Moreover, different users may have various number of interests. In this paper, we argue that it is meaningful to explore a personalized dynamic number of user interests, and learn a dynamic group of user interest representations accordingly. We propose a Reinforced sequential model with dynamic number of interest representations for recommendation systems (RDRSR). Specifically, RDRSR is composed of a dynamic interest discriminator (DID) module and a dynamic interest allocator (DIA) module. The DID module explores the number of a user's interests by learning the overall sequential characteristics with bi-directional self-attention and Gumbel-Softmax. The DIA module allocates the historical clicked items into a group of sub-sequences and constructs user's dynamic interest representations. We formalize the allocation problem in the form of Markov Decision Process(MDP), and sample an action from policy pi for each item to determine which sub-sequence it belongs to. Additionally, experiments on the real-world datasets demonstrates our model's effectiveness.

* 1. Overall Rating Weak Reject 2. Interest to Audience. Will this paper attract the interest of WSDM 2021 attendees? Will it be intriguing and inspiring? Might it be highlighted afterwards in the press as particularly innovative? Interesting to many attendees 

  Access Paper or Ask Questions

Adversarial and Contrastive Variational Autoencoder for Sequential Recommendation

Mar 19, 2021
Zhe Xie, Chengxuan Liu, Yichi Zhang, Hongtao Lu, Dong Wang, Yue Ding

Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.

* 11 pages, WWW 2021 

  Access Paper or Ask Questions

Online Product Feature Recommendations with Interpretable Machine Learning

Apr 28, 2021
Mingming Guo, Nian Yan, Xiquan Cui, Simon Hughes, Khalifeh Al Jadda

Product feature recommendations are critical for online customers to purchase the right products based on the right features. For a customer, selecting the product that has the best trade-off between price and functionality is a time-consuming step in an online shopping experience, and customers can be overwhelmed by the available choices. However, determining the set of product features that most differentiate a particular product is still an open question in online recommender systems. In this paper, we focus on using interpretable machine learning methods to tackle this problem. First, we identify this unique product feature recommendation problem from a business perspective on a major US e-commerce site. Second, we formulate the problem into a price-driven supervised learning problem to discover the product features that could best explain the price of a product in a given product category. We build machine learning models with a model-agnostic method Shapley Values to understand the importance of each feature, rank and recommend the most essential features. Third, we leverage human experts to evaluate its relevancy. The results show that our method is superior to a strong baseline method based on customer behavior and significantly boosts the coverage by 45%. Finally, our proposed method shows comparable conversion rate against the baseline in online A/B tests.

  Access Paper or Ask Questions

Disentangling Long and Short-Term Interests for Recommendation

Feb 26, 2022
Yu Zheng, Chen Gao, Jianxin Chang, Yanan Niu, Yang Song, Depeng Jin, Yong Li

Modeling user's long-term and short-term interests is crucial for accurate recommendation. However, since there is no manually annotated label for user interests, existing approaches always follow the paradigm of entangling these two aspects, which may lead to inferior recommendation accuracy and interpretability. In this paper, to address it, we propose a Contrastive learning framework to disentangle Long and Short-term interests for Recommendation (CLSR) with self-supervision. Specifically, we first propose two separate encoders to independently capture user interests of different time scales. We then extract long-term and short-term interests proxies from the interaction sequences, which serve as pseudo labels for user interests. Then pairwise contrastive tasks are designed to supervise the similarity between interest representations and their corresponding interest proxies. Finally, since the importance of long-term and short-term interests is dynamically changing, we propose to adaptively aggregate them through an attention-based network for prediction. We conduct experiments on two large-scale real-world datasets for e-commerce and short-video recommendation. Empirical results show that our CLSR consistently outperforms all state-of-the-art models with significant improvements: GAUC is improved by over 0.01, and NDCG is improved by over 4%. Further counterfactual evaluations demonstrate that stronger disentanglement of long and short-term interests is successfully achieved by CLSR. The code and data are available at

* Accepted by WWW'22 

  Access Paper or Ask Questions

DebiasGAN: Eliminating Position Bias in News Recommendation with Adversarial Learning

Jun 11, 2021
Chuhan Wu, Fangzhao Wu, Yongfeng Huang

News recommendation is important for improving news reading experience of users. Users' news click behaviors are widely used for inferring user interests and predicting future clicks. However, click behaviors are heavily affected by the biases brought by the positions of news displayed on the webpage. It is important to eliminate the effect of position biases on the recommendation model to accurately target user interests. In this paper, we propose a news recommendation method named DebiasGAN that can effectively eliminate the effect of position biases via adversarial learning. We use a bias-aware click model to capture the influence of position bias on click behaviors, and we use a bias-invariant click model with random candidate news positions to estimate the ideally unbiased click scores. We apply adversarial learning techniques to the hidden representations learned by the two models to help the bias-invariant click model capture the bias-independent interest of users on news. Experimental results on two real-world datasets show that DebiasGAN can effectively improve the accuracy of news recommendation by eliminating position biases.

  Access Paper or Ask Questions

Causal Disentanglement for Semantics-Aware Intent Learning in Recommendation

Feb 05, 2022
Xiangmeng Wang, Qian Li, Dianer Yu, Peng Cui, Zhichao Wang, Guandong Xu

Traditional recommendation models trained on observational interaction data have generated large impacts in a wide range of applications, it faces bias problems that cover users' true intent and thus deteriorate the recommendation effectiveness. Existing methods tracks this problem as eliminating bias for the robust recommendation, e.g., by re-weighting training samples or learning disentangled representation. The disentangled representation methods as the state-of-the-art eliminate bias through revealing cause-effect of the bias generation. However, how to design the semantics-aware and unbiased representation for users true intents is largely unexplored. To bridge the gap, we are the first to propose an unbiased and semantics-aware disentanglement learning called CaDSI (Causal Disentanglement for Semantics-Aware Intent Learning) from a causal perspective. Particularly, CaDSI explicitly models the causal relations underlying recommendation task, and thus produces semantics-aware representations via disentangling users true intents aware of specific item context. Moreover, the causal intervention mechanism is designed to eliminate confounding bias stemmed from context information, which further to align the semantics-aware representation with users true intent. Extensive experiments and case studies both validate the robustness and interpretability of our proposed model.

  Access Paper or Ask Questions