Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Positive, Negative and Neutral: Modeling Implicit Feedback in Session-based News Recommendation

May 12, 2022
Shansan Gong, Kenny Q. Zhu

News recommendation for anonymous readers is a useful but challenging task for many news portals, where interactions between readers and articles are limited within a temporary login session. Previous works tend to formulate session-based recommendation as a next item prediction task, while they neglect the implicit feedback from user behaviors, which indicates what users really like or dislike. Hence, we propose a comprehensive framework to model user behaviors through positive feedback (i.e., the articles they spend more time on) and negative feedback (i.e., the articles they choose to skip without clicking in). Moreover, the framework implicitly models the user using their session start time, and the article using its initial publishing time, in what we call "neutral feedback". Empirical evaluation on three real-world news datasets shows the framework's promising performance of more accurate, diverse and even unexpectedness recommendations than other state-of-the-art session-based recommendation approaches.

* Accepted by SIGIR 2022 main conference 

  Access Paper or Ask Questions

R4: A Framework for Route Representation and Route Recommendation

Oct 25, 2021
Ran Cheng, Chao Chen, Longfei Xu, Shen Li, Lei Wang, Hengbin Cui, Kaikui Liu, Xiaolong Li

Route recommendation is significant in navigation service. Two major challenges for route recommendation are route representation and user representation. Different from items that can be identified by unique IDs in traditional recommendation, routes are combinations of links (i.e., a road segment and its following action like turning left) and the number of combinations could be close to infinite. Besides, the representation of a route changes under different scenarios. These facts result in severe sparsity of routes, which increases the difficulty of route representation. Moreover, link attribute deficiencies and errors affect preciseness of route representation. Because of the sparsity of routes, the interaction data between users and routes are also sparse. This makes it not easy to acquire user representation from historical user-item interactions as traditional recommendations do. To address these issues, we propose a novel learning framework R4. In R4, we design a sparse & dense network to obtain representations of routes. The sparse unit learns link ID embeddings and aggregates them to represent a route, which captures implicit route characteristics and subsequently alleviates problems caused by link attribute deficiencies and errors. The dense unit extracts implicit local features of routes from link attributes. For user representation, we utilize a series of historical navigation to extract user preference. R4 achieves remarkable performance in both offline and online experiments.

  Access Paper or Ask Questions

Federating Recommendations Using Differentially Private Prototypes

Mar 01, 2020
Mónica Ribero, Jette Henderson, Sinead Williamson, Haris Vikalo

Machine learning methods allow us to make recommendations to users in applications across fields including entertainment, dating, and commerce, by exploiting similarities in users' interaction patterns. However, in domains that demand protection of personally sensitive data, such as medicine or banking, how can we learn such a model without accessing the sensitive data, and without inadvertently leaking private information? We propose a new federated approach to learning global and local private models for recommendation without collecting raw data, user statistics, or information about personal preferences. Our method produces a set of prototypes that allows us to infer global behavioral patterns, while providing differential privacy guarantees for users in any database of the system. By requiring only two rounds of communication, we both reduce the communication costs and avoid the excessive privacy loss associated with iterative procedures. We test our framework on synthetic data as well as real federated medical data and Movielens ratings data. We show local adaptation of the global model allows our method to outperform centralized matrix-factorization-based recommender system models, both in terms of accuracy of matrix reconstruction and in terms of relevance of the recommendations, while maintaining provable privacy guarantees. We also show that our method is more robust and is characterized by smaller variance than individual models learned by independent entities.

  Access Paper or Ask Questions

SceneRec: Scene-Based Graph Neural Networks for Recommender Systems

Feb 12, 2021
Gang Wang, Ziyi Guo, Xiang Li, Dawei Yin, Shuai Ma

Collaborative filtering has been largely used to advance modern recommender systems to predict user preference. A key component in collaborative filtering is representation learning, which aims to project users and items into a low dimensional space to capture collaborative signals. However, the scene information, which has effectively guided many recommendation tasks, is rarely considered in existing collaborative filtering methods. To bridge this gap, we focus on scene-based collaborative recommendation and propose a novel representation model SceneRec. SceneRec formally defines a scene as a set of pre-defined item categories that occur simultaneously in real-life situations and creatively designs an item-category-scene hierarchical structure to build a scene-based graph. In the scene-based graph, we adopt graph neural networks to learn scene-specific representation on each item node, which is further aggregated with latent representation learned from collaborative interactions to make recommendations. We perform extensive experiments on real-world E-commerce datasets and the results demonstrate the effectiveness of the proposed method.

  Access Paper or Ask Questions

Content Based Player and Game Interaction Model for Game Recommendation in the Cold Start setting

Sep 11, 2020
Markus Viljanen, Jukka Vahlo, Aki Koponen, Tapio Pahikkala

Game recommendation is an important application of recommender systems. Recommendations are made possible by data sets of historical player and game interactions, and sometimes the data sets include features that describe games or players. Collaborative filtering has been found to be the most accurate predictor of past interactions. However, it can only be applied to predict new interactions for those games and players where a significant number of past interactions are present. In other words, predictions for completely new games and players is not possible. In this paper, we use a survey data set of game likes to present content based interaction models that generalize into new games, new players, and both new games and players simultaneously. We find that the models outperform collaborative filtering in these tasks, which makes them useful for real world game recommendation. The content models also provide interpretations of why certain games are liked by certain players for game analytics purposes.

  Access Paper or Ask Questions

Reinforced Negative Sampling over Knowledge Graph for Recommendation

Mar 12, 2020
Xiang Wang, Yaokun Xu, Xiangnan He, Yixin Cao, Meng Wang, Tat-Seng Chua

Properly handling missing data is a fundamental challenge in recommendation. Most present works perform negative sampling from unobserved data to supply the training of recommender models with negative signals. Nevertheless, existing negative sampling strategies, either static or adaptive ones, are insufficient to yield high-quality negative samples --- both informative to model training and reflective of user real needs. In this work, we hypothesize that item knowledge graph (KG), which provides rich relations among items and KG entities, could be useful to infer informative and factual negative samples. Towards this end, we develop a new negative sampling model, Knowledge Graph Policy Network (KGPolicy), which works as a reinforcement learning agent to explore high-quality negatives. Specifically, by conducting our designed exploration operations, it navigates from the target positive interaction, adaptively receives knowledge-aware negative signals, and ultimately yields a potential negative item to train the recommender. We tested on a matrix factorization (MF) model equipped with KGPolicy, and it achieves significant improvements over both state-of-the-art sampling methods like DNS and IRGAN, and KG-enhanced recommender models like KGAT. Further analyses from different angles provide insights of knowledge-aware sampling. We release the codes and datasets at

* WWW 2020 oral presentation 

  Access Paper or Ask Questions

Web Links Prediction And Category-Wise Recommendation Based On Browser History

Feb 21, 2019
Ashadullah Shawon, Syed Tauhid Zuhori, Firoz Mahmud, Md. Jamil-Ur Rahman

A web browser should not be only for browsing web pages but also help users to find out their target websites and recommend similar type websites based on their behavior. Throughout this paper, we propose two methods to make a web browser more intelligent about link prediction which works during typing on address-bar and recommendation of websites according to several categories. Our proposed link prediction system is actually frecency prediction which is predicted based on the first visit, last visit and URL counts. But recommend system is the most challenging as it is needed to classify web URLs according to names without visiting web pages. So we use existing model for URL classification. The only existing approach gives unsatisfactory results and low accuracy. So we add hyperparameter optimization with an existing approach that finds the best parameters for existing URL classification model and gives better accuracy. In this paper, we propose a category wise recommendation system using frecency value and the total visit of individual URL category.

* preprint 

  Access Paper or Ask Questions

Knowledge Graph Contrastive Learning for Recommendation

May 02, 2022
Yuhao Yang, Chao Huang, Lianghao Xia, Chenliang Li

Knowledge Graphs (KGs) have been utilized as useful side information to improve recommendation quality. In those recommender systems, knowledge graph information often contains fruitful facts and inherent semantic relatedness among items. However, the success of such methods relies on the high quality knowledge graphs, and may not learn quality representations with two challenges: i) The long-tail distribution of entities results in sparse supervision signals for KG-enhanced item representation; ii) Real-world knowledge graphs are often noisy and contain topic-irrelevant connections between items and entities. Such KG sparsity and noise make the item-entity dependent relations deviate from reflecting their true characteristics, which significantly amplifies the noise effect and hinders the accurate representation of user's preference. To fill this research gap, we design a general Knowledge Graph Contrastive Learning framework (KGCL) that alleviates the information noise for knowledge graph-enhanced recommender systems. Specifically, we propose a knowledge graph augmentation schema to suppress KG noise in information aggregation, and derive more robust knowledge-aware representations for items. In addition, we exploit additional supervision signals from the KG augmentation process to guide a cross-view contrastive learning paradigm, giving a greater role to unbiased user-item interactions in gradient descent and further suppressing the noise. Extensive experiments on three public datasets demonstrate the consistent superiority of our KGCL over state-of-the-art techniques. KGCL also achieves strong performance in recommendation scenarios with sparse user-item interactions, long-tail and noisy KG entities. Our implementation codes are available at

* This paper has been published as a full paper at SIGIR 2022 

  Access Paper or Ask Questions

Exploring Heterogeneous Metadata for Video Recommendation with Two-tower Model

Sep 22, 2021
Jianling Wang, Ainur Yessenalina, Alireza Roshan-Ghias

Online video services acquire new content on a daily basis to increase engagement, and improve the user experience. Traditional recommender systems solely rely on watch history, delaying the recommendation of newly added titles to the right customer. However, one can use the metadata information of a cold-start title to bootstrap the personalization. In this work, we propose to adopt a two-tower model, in which one tower is to learn the user representation based on their watch history, and the other tower is to learn the effective representations for titles using metadata. The contribution of this work can be summarized as: (1) we show the feasibility of using two-tower model for recommendations and conduct a series of offline experiments to show its performance for cold-start titles; (2) we explore different types of metadata (categorical features, text description, cover-art image) and an attention layer to fuse them; (3) with our Amazon proprietary data, we show that the attention layer can assign weights adaptively to different metadata with improved recommendation for warm- and cold-start items.

  Access Paper or Ask Questions

GroupIM: A Mutual Information Maximization Framework for Neural Group Recommendation

Jun 09, 2020
Aravind Sankar, Yanhong Wu, Yuhang Wu, Wei Zhang, Hao Yang, Hari Sundaram

We study the problem of making item recommendations to ephemeral groups, which comprise users with limited or no historical activities together. Existing studies target persistent groups with substantial activity history, while ephemeral groups lack historical interactions. To overcome group interaction sparsity, we propose data-driven regularization strategies to exploit both the preference covariance amongst users who are in the same group, as well as the contextual relevance of users' individual preferences to each group. We make two contributions. First, we present a recommender architecture-agnostic framework GroupIM that can integrate arbitrary neural preference encoders and aggregators for ephemeral group recommendation. Second, we regularize the user-group latent space to overcome group interaction sparsity by: maximizing mutual information between representations of groups and group members; and dynamically prioritizing the preferences of highly informative members through contextual preference weighting. Our experimental results on several real-world datasets indicate significant performance improvements (31-62% relative [email protected]) over state-of-the-art group recommendation techniques.

* SIGIR 2020 

  Access Paper or Ask Questions