Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Embedding models for recommendation under contextual constraints

Jun 21, 2019
Syrine Krichene, Mike Gartrell, Clement Calauzenes

Embedding models, which learn latent representations of users and items based on user-item interaction patterns, are a key component of recommendation systems. In many applications, contextual constraints need to be applied to refine recommendations, e.g. when a user specifies a price range or product category filter. The conventional approach, for both context-aware and standard models, is to retrieve items and apply the constraints as independent operations. The order in which these two steps are executed can induce significant problems. For example, applying constraints a posteriori can result in incomplete recommendations or low-quality results for the tail of the distribution (i.e., less popular items). As a result, the additional information that the constraint brings about user intent may not be accurately captured. In this paper we propose integrating the information provided by the contextual constraint into the similarity computation, by merging constraint application and retrieval into one operation in the embedding space. This technique allows us to generate high-quality recommendations for the specified constraint. Our approach learns constraints representations jointly with the user and item embeddings. We incorporate our methods into a matrix factorization model, and perform an experimental evaluation on one internal and two real-world datasets. Our results show significant improvements in predictive performance compared to context-aware and standard models.

  Access Paper or Ask Questions

Learnable Model Augmentation Self-Supervised Learning for Sequential Recommendation

Apr 21, 2022
Yongjing Hao, Pengpeng Zhao, Xuefeng Xian, Guanfeng Liu, Deqing Wang, Lei Zhao, Yanchi Liu, Victor S. Sheng

Sequential Recommendation aims to predict the next item based on user behaviour. Recently, Self-Supervised Learning (SSL) has been proposed to improve recommendation performance. However, most of existing SSL methods use a uniform data augmentation scheme, which loses the sequence correlation of an original sequence. To this end, in this paper, we propose a Learnable Model Augmentation self-supervised learning for sequential Recommendation (LMA4Rec). Specifically, LMA4Rec first takes model augmentation as a supplementary method for data augmentation to generate views. Then, LMA4Rec uses learnable Bernoulli dropout to implement model augmentation learnable operations. Next, self-supervised learning is used between the contrastive views to extract self-supervised signals from an original sequence. Finally, experiments on three public datasets show that the LMA4Rec method effectively improves sequential recommendation performance compared with baseline methods.

  Access Paper or Ask Questions

PREMIER: Personalized REcommendation for Medical prescrIptions from Electronic Records

Aug 28, 2020
Suman Bhoi, Lee Mong Li, Wynne Hsu

The broad adoption of Electronic Health Records (EHR) has led to vast amounts of data being accumulated on a patient's history, diagnosis, prescriptions, and lab tests. Advances in recommender technologies have the potential to utilize this information to help doctors personalize the prescribed medications. In this work, we design a two-stage attention-based personalized medication recommender system called PREMIER which incorporates information from the EHR to suggest a set of medications. Our system takes into account the interactions among drugs in order to minimize the adverse effects for the patient. We utilize the various attention weights in the system to compute the contributions from the information sources for the recommended medications. Experiment results on MIMIC-III and a proprietary outpatient dataset show that PREMIER outperforms state-of-the-art medication recommendation systems while achieving the best tradeoff between accuracy and drug-drug interaction. Two case studies are also presented demonstrating that the justifications provided by PREMIER are appropriate and aligned to clinical practices.

  Access Paper or Ask Questions

Quantifying Availability and Discovery in Recommender Systems via Stochastic Reachability

Jun 30, 2021
Mihaela Curmei, Sarah Dean, Benjamin Recht

In this work, we consider how preference models in interactive recommendation systems determine the availability of content and users' opportunities for discovery. We propose an evaluation procedure based on stochastic reachability to quantify the maximum probability of recommending a target piece of content to an user for a set of allowable strategic modifications. This framework allows us to compute an upper bound on the likelihood of recommendation with minimal assumptions about user behavior. Stochastic reachability can be used to detect biases in the availability of content and diagnose limitations in the opportunities for discovery granted to users. We show that this metric can be computed efficiently as a convex program for a variety of practical settings, and further argue that reachability is not inherently at odds with accuracy. We demonstrate evaluations of recommendation algorithms trained on large datasets of explicit and implicit ratings. Our results illustrate how preference models, selection rules, and user interventions impact reachability and how these effects can be distributed unevenly.

* to appear ICML 2021 

  Access Paper or Ask Questions

Phrase Table as Recommendation Memory for Neural Machine Translation

May 25, 2018
Yang Zhao, Yining Wang, Jiajun Zhang, Chengqing Zong

Neural Machine Translation (NMT) has drawn much attention due to its promising translation performance recently. However, several studies indicate that NMT often generates fluent but unfaithful translations. In this paper, we propose a method to alleviate this problem by using a phrase table as recommendation memory. The main idea is to add bonus to words worthy of recommendation, so that NMT can make correct predictions. Specifically, we first derive a prefix tree to accommodate all the candidate target phrases by searching the phrase translation table according to the source sentence. Then, we construct a recommendation word set by matching between candidate target phrases and previously translated target words by NMT. After that, we determine the specific bonus value for each recommendable word by using the attention vector and phrase translation probability. Finally, we integrate this bonus value into NMT to improve the translation results. The extensive experiments demonstrate that the proposed methods obtain remarkable improvements over the strong attentionbased NMT.

* accepted by IJCAI 2018 

  Access Paper or Ask Questions

From Intrinsic to Counterfactual: On the Explainability of Contextualized Recommender Systems

Oct 28, 2021
Yao Zhou, Haonan Wang, Jingrui He, Haixun Wang

With the prevalence of deep learning based embedding approaches, recommender systems have become a proven and indispensable tool in various information filtering applications. However, many of them remain difficult to diagnose what aspects of the deep models' input drive the final ranking decision, thus, they cannot often be understood by human stakeholders. In this paper, we investigate the dilemma between recommendation and explainability, and show that by utilizing the contextual features (e.g., item reviews from users), we can design a series of explainable recommender systems without sacrificing their performance. In particular, we propose three types of explainable recommendation strategies with gradual change of model transparency: whitebox, graybox, and blackbox. Each strategy explains its ranking decisions via different mechanisms: attention weights, adversarial perturbations, and counterfactual perturbations. We apply these explainable models on five real-world data sets under the contextualized setting where users and items have explicit interactions. The empirical results show that our model achieves highly competitive ranking performance, and generates accurate and effective explanations in terms of numerous quantitative metrics and qualitative visualizations.

  Access Paper or Ask Questions

Ontology-Based Recommendation of Editorial Products

Mar 24, 2021
Thiviyan Thanapalasingam, Francesco Osborne, Aliaksandr Birukou, Enrico Motta

Major academic publishers need to be able to analyse their vast catalogue of products and select the best items to be marketed in scientific venues. This is a complex exercise that requires characterising with a high precision the topics of thousands of books and matching them with the interests of the relevant communities. In Springer Nature, this task has been traditionally handled manually by publishing editors. However, the rapid growth in the number of scientific publications and the dynamic nature of the Computer Science landscape has made this solution increasingly inefficient. We have addressed this issue by creating Smart Book Recommender (SBR), an ontology-based recommender system developed by The Open University (OU) in collaboration with Springer Nature, which supports their Computer Science editorial team in selecting the products to market at specific venues. SBR recommends books, journals, and conference proceedings relevant to a conference by taking advantage of a semantically enhanced representation of about 27K editorial products. This is based on the Computer Science Ontology, a very large-scale, automatically generated taxonomy of research areas. SBR also allows users to investigate why a certain publication was suggested by the system. It does so by means of an interactive graph view that displays the topic taxonomy of the recommended editorial product and compares it with the topic-centric characterization of the input conference. An evaluation carried out with seven Springer Nature editors and seven OU researchers has confirmed the effectiveness of the solution.

* In: The Semantic Web - ISWC 2018. Lecture Notes in Computer Science, vol 11137. Springer, Cham 

  Access Paper or Ask Questions

Deviation-Based Learning

Sep 20, 2021
Junpei Komiyama, Shunya Noda

We propose deviation-based learning, a new approach to training recommender systems. In the beginning, the recommender and rational users have different pieces of knowledge, and the recommender needs to learn the users' knowledge to make better recommendations. The recommender learns users' knowledge by observing whether each user followed or deviated from her recommendations. We show that learning frequently stalls if the recommender always recommends a choice: users tend to follow the recommendation blindly, and their choices do not reflect their knowledge. Social welfare and the learning rate are improved drastically if the recommender abstains from recommending a choice when she predicts that multiple arms will produce a similar payoff.

  Access Paper or Ask Questions

Distributed-Representation Based Hybrid Recommender System with Short Item Descriptions

Mar 15, 2017
Junhua He, Hankz Hankui Zhuo, Jarvan Law

Collaborative filtering (CF) aims to build a model from users' past behaviors and/or similar decisions made by other users, and use the model to recommend items for users. Despite of the success of previous collaborative filtering approaches, they are all based on the assumption that there are sufficient rating scores available for building high-quality recommendation models. In real world applications, however, it is often difficult to collect sufficient rating scores, especially when new items are introduced into the system, which makes the recommendation task challenging. We find that there are often "short" texts describing features of items, based on which we can approximate the similarity of items and make recommendation together with rating scores. In this paper we "borrow" the idea of vector representation of words to capture the information of short texts and embed it into a matrix factorization framework. We empirically show that our approach is effective by comparing it with state-of-the-art approaches.

* 10 pages, 5 figures 

  Access Paper or Ask Questions

An Intelligent Recommendation-cum-Reminder System

Aug 09, 2021
Rohan Saxena, Maheep Chaudhary, Chandresh Kumar Maurya, Shitala Prasad

Intelligent recommendation and reminder systems are the need of the fast-pacing life. Current intelligent systems such as Siri, Google Assistant, Microsoft Cortona, etc., have limited capability. For example, if you want to wake up at 6 am because you have an upcoming trip, you have to set the alarm manually. Besides, these systems do not recommend or remind what else to carry, such as carrying an umbrella during a likely rain. The present work proposes a system that takes an email as input and returns a recommendation-cumreminder list. As a first step, we parse the emails, recognize the entities using named entity recognition (NER). In the second step, information retrieval over the web is done to identify nearby places, climatic conditions, etc. Imperative sentences from the reviews of all places are extracted and passed to the object extraction module. The main challenge lies in extracting the objects (items) of interest from the review. To solve it, a modified Machine Reading Comprehension-NER (MRC-NER) model is trained to tag objects of interest by formulating annotation rules as a query. The objects so found are recommended to the user one day in advance. The final reminder list of objects is pruned by our proposed model for tracking objects kept during the "packing activity." Eventually, when the user leaves for the event/trip, an alert is sent containing the reminding list items. Our approach achieves superior performance compared to several baselines by as much as 30% on recall and 10% on precision.

* 9 

  Access Paper or Ask Questions