Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Pre-training of Context-aware Item Representation for Next Basket Recommendation

Apr 14, 2019
Jingxuan Yang, Jun Xu, Jianzhuo Tong, Sheng Gao, Jun Guo, Jirong Wen

Next basket recommendation, which aims to predict the next a few items that a user most probably purchases given his historical transactions, plays a vital role in market basket analysis. From the viewpoint of item, an item could be purchased by different users together with different items, for different reasons. Therefore, an ideal recommender system should represent an item considering its transaction contexts. Existing state-of-the-art deep learning methods usually adopt the static item representations, which are invariant among all of the transactions and thus cannot achieve the full potentials of deep learning. Inspired by the pre-trained representations of BERT in natural language processing, we propose to conduct context-aware item representation for next basket recommendation, called Item Encoder Representations from Transformers (IERT). In the offline phase, IERT pre-trains deep item representations conditioning on their transaction contexts. In the online recommendation phase, the pre-trained model is further fine-tuned with an additional output layer. The output contextualized item embeddings are used to capture users' sequential behaviors and general tastes to conduct recommendation. Experimental results on the Ta-Feng data set show that IERT outperforms the state-of-the-art baseline methods, which demonstrated the effectiveness of IERT in next basket representation.

  Access Paper or Ask Questions

A Generic Network Compression Framework for Sequential Recommender Systems

May 26, 2020
Yang Sun, Fajie Yuan, Min Yang, Guoao Wei, Zhou Zhao, Duo Liu

Sequential recommender systems (SRS) have become the key technology in capturing user's dynamic interests and generating high-quality recommendations. Current state-of-the-art sequential recommender models are typically based on a sandwich-structured deep neural network, where one or more middle (hidden) layers are placed between the input embedding layer and output softmax layer. In general, these models require a large number of parameters (such as using a large embedding dimension or a deep network architecture) to obtain their optimal performance. Despite the effectiveness, at some point, further increasing model size may be harder for model deployment in resource-constraint devices, resulting in longer responding time and larger memory footprint. To resolve the issues, we propose a compressed sequential recommendation framework, termed as CpRec, where two generic model shrinking techniques are employed. Specifically, we first propose a block-wise adaptive decomposition to approximate the input and softmax matrices by exploiting the fact that items in SRS obey a long-tailed distribution. To reduce the parameters of the middle layers, we introduce three layer-wise parameter sharing schemes. We instantiate CpRec using deep convolutional neural network with dilated kernels given consideration to both recommendation accuracy and efficiency. By the extensive ablation studies, we demonstrate that the proposed CpRec can achieve up to 4$\sim$8 times compression rates in real-world SRS datasets. Meanwhile, CpRec is faster during training\inference, and in most cases outperforms its uncompressed counterpart.

* Accepted by SIGIR2020 

  Access Paper or Ask Questions

A Duet Recommendation Algorithm Based on Jointly Local and Global Representation Learning

Dec 03, 2020
Xiaoming Liu, Shaocong Wu, Zhaohan Zhang, Zhanwei Zhang, Yu Lan, Chao Shen

Knowledge graph (KG), as the side information, is widely utilized to learn the semantic representations of item/user for recommendation system. The traditional recommendation algorithms usually just depend on user-item interactions, but ignore the inherent web information describing the item/user, which could be formulated by the knowledge graph embedding (KGE) methods to significantly improve applications' performance. In this paper, we propose a knowledge-aware-based recommendation algorithm to capture the local and global representation learning from heterogeneous information. Specifically, the local model and global model can naturally depict the inner patterns in the content-based heterogeneous information and interactive behaviors among the users and items. Based on the method that local and global representations are learned jointly by graph convolutional networks with attention mechanism, the final recommendation probability is calculated by a fully-connected neural network. Extensive experiments are conducted on two real-world datasets to verify the proposed algorithm's validation. The evaluation results indicate that the proposed algorithm surpasses state-of-arts by $10.0\%$, $5.1\%$, $2.5\%$ and $1.8\%$ in metrics of MAE, RMSE, AUC and F1-score at least, respectively. The significant improvements reveal the capacity of our proposal to recommend user/item effectively.

  Access Paper or Ask Questions

Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sampling

Apr 30, 2021
Simen Eide, David S. Leslie, Arnoldo Frigessi

We consider the problem of recommending relevant content to users of an internet platform in the form of lists of items, called slates. We introduce a variational Bayesian Recurrent Neural Net recommender system that acts on time series of interactions between the internet platform and the user, and which scales to real world industrial situations. The recommender system is tested both online on real users, and on an offline dataset collected from a Norwegian web-based marketplace,, that is made public for research. This is one of the first publicly available datasets which includes all the slates that are presented to users as well as which items (if any) in the slates were clicked on. Such a data set allows us to move beyond the common assumption that implicitly assumes that users are considering all possible items at each interaction. Instead we build our likelihood using the items that are actually in the slate, and evaluate the strengths and weaknesses of both approaches theoretically and in experiments. We also introduce a hierarchical prior for the item parameters based on group memberships. Both item parameters and user preferences are learned probabilistically. Furthermore, we combine our model with bandit strategies to ensure learning, and introduce `in-slate Thompson Sampling' which makes use of the slates to maximise explorative opportunities. We show experimentally that explorative recommender strategies perform on par or above their greedy counterparts. Even without making use of exploration to learn more effectively, click rates increase simply because of improved diversity in the recommended slates.

* The code and the data used in the article are available in the following repository: 

  Access Paper or Ask Questions

Discovering Collaborative Signals for Next POI Recommendation with Iterative Seq2Graph Augmentation

Jun 30, 2021
Yang Li, Tong Chen, Hongzhi Yin, Zi Huang

Being an indispensable component in location-based social networks, next point-of-interest (POI) recommendation recommends users unexplored POIs based on their recent visiting histories. However, existing work mainly models check-in data as isolated POI sequences, neglecting the crucial collaborative signals from cross-sequence check-in information. Furthermore, the sparse POI-POI transitions restrict the ability of a model to learn effective sequential patterns for recommendation. In this paper, we propose Sequence-to-Graph (Seq2Graph) augmentation for each POI sequence, allowing collaborative signals to be propagated from correlated POIs belonging to other sequences. We then devise a novel Sequence-to-Graph POI Recommender (SGRec), which jointly learns POI embeddings and infers a user's temporal preferences from the graph-augmented POI sequence. To overcome the sparsity of POI-level interactions, we further infuse category-awareness into SGRec with a multi-task learning scheme that captures the denser category-wise transitions. As such, SGRec makes full use of the collaborative signals for learning expressive POI representations, and also comprehensively uncovers multi-level sequential patterns for user preference modelling. Extensive experiments on two real-world datasets demonstrate the superiority of SGRec against state-of-the-art methods in next POI recommendation.

  Access Paper or Ask Questions

Neighbor Enhanced Graph Convolutional Networks for Node Classification and Recommendation

Mar 30, 2022
Hao Chen, Zhong Huang, Yue Xu, Zengde Deng, Feiran Huang, Peng He, Zhoujun Li

The recently proposed Graph Convolutional Networks (GCNs) have achieved significantly superior performance on various graph-related tasks, such as node classification and recommendation. However, currently researches on GCN models usually recursively aggregate the information from all the neighbors or randomly sampled neighbor subsets, without explicitly identifying whether the aggregated neighbors provide useful information during the graph convolution. In this paper, we theoretically analyze the affection of the neighbor quality over GCN models' performance and propose the Neighbor Enhanced Graph Convolutional Network (NEGCN) framework to boost the performance of existing GCN models. Our contribution is three-fold. First, we at the first time propose the concept of neighbor quality for both node classification and recommendation tasks in a general theoretical framework. Specifically, for node classification, we propose three propositions to theoretically analyze how the neighbor quality affects the node classification performance of GCN models. Second, based on the three proposed propositions, we introduce the graph refinement process including specially designed neighbor evaluation methods to increase the neighbor quality so as to boost both the node classification and recommendation tasks. Third, we conduct extensive node classification and recommendation experiments on several benchmark datasets. The experimental results verify that our proposed NEGCN framework can significantly enhance the performance for various typical GCN models on both node classification and recommendation tasks.

* 29 pages, 3 figures, 7 tables. Accepted to Knowledge-Based Systems 

  Access Paper or Ask Questions

GateFormer: Speeding Up News Feed Recommendation with Input Gated Transformers

Jan 12, 2022
Peitian Zhang, Zheng liu

News feed recommendation is an important web service. In recent years, pre-trained language models (PLMs) have been intensively applied to improve the recommendation quality. However, the utilization of these deep models is limited in many aspects, such as lack of explainability and being incompatible with the existing inverted index systems. Above all, the PLMs based recommenders are inefficient, as the encoding of user-side information will take huge computation costs. Although the computation can be accelerated with efficient transformers or distilled PLMs, it is still not enough to make timely recommendations for the active users, who are associated with super long news browsing histories. In this work, we tackle the efficient news recommendation problem from a distinctive perspective. Instead of relying on the entire input (i.e., the collection of news articles a user ever browsed), we argue that the user's interest can be fully captured merely with those representative keywords. Motivated by this, we propose GateFormer, where the input data is gated before feeding into transformers. The gating module is made personalized, lightweight and end-to-end learnable, such that it may perform accurate and efficient filtering of informative user input. GateFormer achieves highly impressive performances in experiments, where it notably outperforms the existing acceleration approaches in both accuracy and efficiency. We also surprisingly find that even with over 10-fold compression of the original input, GateFormer is still able to maintain on-par performances with the SOTA methods.

  Access Paper or Ask Questions

Genetic Meta-Structure Search for Recommendation on Heterogeneous Information Network

Feb 21, 2021
Zhenyu Han, Fengli Xu, Jinghan Shi, Yu Shang, Haorui Ma, Pan Hui, Yong Li

In the past decade, the heterogeneous information network (HIN) has become an important methodology for modern recommender systems. To fully leverage its power, manually designed network templates, i.e., meta-structures, are introduced to filter out semantic-aware information. The hand-crafted meta-structure rely on intense expert knowledge, which is both laborious and data-dependent. On the other hand, the number of meta-structures grows exponentially with its size and the number of node types, which prohibits brute-force search. To address these challenges, we propose Genetic Meta-Structure Search (GEMS) to automatically optimize meta-structure designs for recommendation on HINs. Specifically, GEMS adopts a parallel genetic algorithm to search meaningful meta-structures for recommendation, and designs dedicated rules and a meta-structure predictor to efficiently explore the search space. Finally, we propose an attention based multi-view graph convolutional network module to dynamically fuse information from different meta-structures. Extensive experiments on three real-world datasets suggest the effectiveness of GEMS, which consistently outperforms all baseline methods in HIN recommendation. Compared with simplified GEMS which utilizes hand-crafted meta-paths, GEMS achieves over $6\%$ performance gain on most evaluation metrics. More importantly, we conduct an in-depth analysis on the identified meta-structures, which sheds light on the HIN based recommender system design.

* Published in Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20) 

  Access Paper or Ask Questions

A Bayesian Approach to Conversational Recommendation Systems

Feb 12, 2020
Francesca Mangili, Denis Broggini, Alessandro Antonucci, Marco Alberti, Lorenzo Cimasoni

We present a conversational recommendation system based on a Bayesian approach. A probability mass function over the items is updated after any interaction with the user, with information-theoretic criteria optimally shaping the interaction and deciding when the conversation should be terminated and the most probable item consequently recommended. Dedicated elicitation techniques for the prior probabilities of the parameters modeling the interactions are derived from basic structural judgements. Such prior information can be combined with historical data to discriminate items with different recommendation histories. A case study based on the application of this approach to \emph{}, an online platform for booking entertainers, is finally discussed together with an empirical analysis showing the advantages in terms of recommendation quality and efficiency.

* Accepted for oral presentation at the \emph{AAAI 2020 Workshop on Interactive and Conversational Recommendation Systems} (WICRS) 

  Access Paper or Ask Questions