Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Pre-training Graph Neural Network for Cross Domain Recommendation

Nov 16, 2021
Chen Wang, Yueqing Liang, Zhiwei Liu, Tao Zhang, Philip S. Yu

A recommender system predicts users' potential interests in items, where the core is to learn user/item embeddings. Nevertheless, it suffers from the data-sparsity issue, which the cross-domain recommendation can alleviate. However, most prior works either jointly learn the source domain and target domain models, or require side-features. However, jointly training and side features would affect the prediction on the target domain as the learned embedding is dominated by the source domain containing bias information. Inspired by the contemporary arts in pre-training from graph representation learning, we propose a pre-training and fine-tuning diagram for cross-domain recommendation. We devise a novel Pre-training Graph Neural Network for Cross-Domain Recommendation (PCRec), which adopts the contrastive self-supervised pre-training of a graph encoder. Then, we transfer the pre-trained graph encoder to initialize the node embeddings on the target domain, which benefits the fine-tuning of the single domain recommender system on the target domain. The experimental results demonstrate the superiority of PCRec. Detailed analyses verify the superiority of PCRec in transferring information while avoiding biases from source domains.

  Access Paper or Ask Questions

Origin-Aware Next Destination Recommendation with Personalized Preference Attention

Jan 11, 2021
Nicholas Lim, Bryan Hooi, See-Kiong Ng, Xueou Wang, Yong Liang Goh, Renrong Weng, Rui Tan

Next destination recommendation is an important task in the transportation domain of taxi and ride-hailing services, where users are recommended with personalized destinations given their current origin location. However, recent recommendation works do not satisfy this origin-awareness property, and only consider learning from historical destination locations, without origin information. Thus, the resulting approaches are unable to learn and predict origin-aware recommendations based on the user's current location, leading to sub-optimal performance and poor real-world practicality. Hence, in this work, we study the origin-aware next destination recommendation task. We propose the Spatial-Temporal Origin-Destination Personalized Preference Attention (STOD-PPA) encoder-decoder model to learn origin-origin (OO), destination-destination (DD), and origin-destination (OD) relationships by first encoding both origin and destination sequences with spatial and temporal factors in local and global views, then decoding them through personalized preference attention to predict the next destination. Experimental results on seven real-world user trajectory taxi datasets show that our model significantly outperforms baseline and state-of-the-art methods.

* To appear in the Proceedings of the 14th ACM International Conference on Web Search and Data Mining (WSDM), 2021 

  Access Paper or Ask Questions

Improving Sequential Recommendation Consistency with Self-Supervised Imitation

Jun 29, 2021
Xu Yuan, Hongshen Chen, Yonghao Song, Xiaofang Zhao, Zhuoye Ding, Zhen He, Bo Long

Most sequential recommendation models capture the features of consecutive items in a user-item interaction history. Though effective, their representation expressiveness is still hindered by the sparse learning signals. As a result, the sequential recommender is prone to make inconsistent predictions. In this paper, we propose a model, SSI, to improve sequential recommendation consistency with Self-Supervised Imitation. Precisely, we extract the consistency knowledge by utilizing three self-supervised pre-training tasks, where temporal consistency and persona consistency capture user-interaction dynamics in terms of the chronological order and persona sensitivities, respectively. Furthermore, to provide the model with a global perspective, global session consistency is introduced by maximizing the mutual information among global and local interaction sequences. Finally, to comprehensively take advantage of all three independent aspects of consistency-enhanced knowledge, we establish an integrated imitation learning framework. The consistency knowledge is effectively internalized and transferred to the student model by imitating the conventional prediction logit as well as the consistency-enhanced item representations. In addition, the flexible self-supervised imitation framework can also benefit other student recommenders. Experiments on four real-world datasets show that SSI effectively outperforms the state-of-the-art sequential recommendation methods.

* accepted by IJCAI 2021 

  Access Paper or Ask Questions

Learning Fair Representations for Bipartite Graph based Recommendation

Feb 22, 2021
Le Wu, Lei Chen, Pengyang Shao, Richang Hong, Xiting Wang, Meng Wang

As a key application of artificial intelligence, recommender systems are among the most pervasive computer aided systems to help users find potential items of interests. Recently, researchers paid considerable attention to fairness issues for artificial intelligence applications. Most of these approaches assumed independence of instances, and designed sophisticated models to eliminate the sensitive information to facilitate fairness. However, recommender systems differ greatly from these approaches as users and items naturally form a user-item bipartite graph, and are collaboratively correlated in the graph structure. In this paper, we propose a novel graph based technique for ensuring fairness of any recommendation models. Here, the fairness requirements refer to not exposing sensitive feature set in the user modeling process. Specifically, given the original embeddings from any recommendation models, we learn a composition of filters that transform each user's and each item's original embeddings into a filtered embedding space based on the sensitive feature set. For each user, this transformation is achieved under the adversarial learning of a user-centric graph, in order to obfuscate each sensitive feature between both the filtered user embedding and the sub graph structures of this user. Finally, extensive experimental results clearly show the effectiveness of our proposed model for fair recommendation. We publish the source code at

* The paper is accepted by WWW 2021 

  Access Paper or Ask Questions

Measuring the User Satisfaction in a Recommendation Interface with Multiple Carousels

May 14, 2021
Nicolò Felicioni, Maurizio Ferrari Dacrema, Paolo Cremonesi

It is common for video-on-demand and music streaming services to adopt a user interface composed of several recommendation lists, i.e. widgets or swipeable carousels, each generated according to a specific criterion or algorithm (e.g. most recent, top popular, recommended for you, editors' choice, etc.). Selecting the appropriate combination of carousel has significant impact on user satisfaction. A crucial aspect of this user interface is that to measure the relevance a new carousel for the user it is not sufficient to account solely for its individual quality. Instead, it should be considered that other carousels will already be present in the interface. This is not considered by traditional evaluation protocols for recommenders systems, in which each carousel is evaluated in isolation, regardless of (i) which other carousels are displayed to the user and (ii) the relative position of the carousel with respect to other carousels. Hence, we propose a two-dimensional evaluation protocol for a carousel setting that will measure the quality of a recommendation carousel based on how much it improves upon the quality of an already available set of carousels. Our evaluation protocol takes into account also the position bias, i.e. users do not explore the carousels sequentially, but rather concentrate on the top-left corner of the screen. We report experiments on the movie domain and notice that under a carousel setting the definition of which criteria has to be preferred to generate a list of recommended items changes with respect to what is commonly understood.

* ACM International Conference on Interactive Media Experiences (IMX '21), June 21--23, 2021, Virtual Event, NY, USA 

  Access Paper or Ask Questions

Local Citation Recommendation with Hierarchical-Attention Text Encoder and SciBERT-based Reranking

Dec 02, 2021
Nianlong Gu, Yingqiang Gao, Richard H. R. Hahnloser

The goal of local citation recommendation is to recommend a missing reference from the local citation context and optionally also from the global context. To balance the tradeoff between speed and accuracy of citation recommendation in the context of a large-scale paper database, a viable approach is to first prefetch a limited number of relevant documents using efficient ranking methods and then to perform a fine-grained reranking using more sophisticated models. In that vein, BM25 has been found to be a tough-to-beat approach to prefetching, which is why recent work has focused mainly on the reranking step. Even so, we explore prefetching with nearest neighbor search among text embeddings constructed by a hierarchical attention network. When coupled with a SciBERT reranker fine-tuned on local citation recommendation tasks, our hierarchical Attention encoder (HAtten) achieves high prefetch recall for a given number of candidates to be reranked. Consequently, our reranker needs to rerank fewer prefetch candidates, yet still achieves state-of-the-art performance on various local citation recommendation datasets such as ACL-200, FullTextPeerRead, RefSeer, and arXiv.

* Accepted by ECIR 2022: 

  Access Paper or Ask Questions

Online certification of preference-based fairness for personalized recommender systems

Apr 29, 2021
Virginie Do, Sam Corbett-Davies, Jamal Atif, Nicolas Usunier

We propose to assess the fairness of personalized recommender systems in the sense of envy-freeness: every (group of) user(s) should prefer their recommendations to the recommendations of other (groups of) users. Auditing for envy-freeness requires probing user preferences to detect potential blind spots, which may deteriorate recommendation performance. To control the cost of exploration, we propose an auditing algorithm based on pure exploration and conservative constraints in multi-armed bandits. We study, both theoretically and empirically, the trade-offs achieved by this algorithm.

  Access Paper or Ask Questions