Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Where are we in embedding spaces? A Comprehensive Analysis on Network Embedding Approaches for Recommender Systems

May 19, 2021
Sixiao Zhang, Hongxu Chen, Xiao Ming, Lizhen Cui, Hongzhi Yin, Guandong Xu

Hyperbolic space and hyperbolic embeddings are becoming a popular research field for recommender systems. However, it is not clear under what circumstances the hyperbolic space should be considered. To fill this gap, This paper provides theoretical analysis and empirical results on when and where to use hyperbolic space and hyperbolic embeddings in recommender systems. Specifically, we answer the questions that which type of models and datasets are more suited for hyperbolic space, as well as which latent size to choose. We evaluate our answers by comparing the performance of Euclidean space and hyperbolic space on different latent space models in both general item recommendation domain and social recommendation domain, with 6 widely used datasets and different latent sizes. Additionally, we propose a new metric learning based recommendation method called SCML and its hyperbolic version HSCML. We evaluate our conclusions regarding hyperbolic space on SCML and show the state-of-the-art performance of hyperbolic space by comparing HSCML with other baseline methods.


  Access Paper or Ask Questions

Self-supervised Learning for Deep Models in Recommendations

Jul 25, 2020
Tiansheng Yao, Xinyang Yi, Derek Zhiyuan Cheng, Felix Yu, Aditya Menon, Lichan Hong, Ed H. Chi, Steve Tjoa, Jieqi, Kang, Evan Ettinger

Large scale neural recommender models play a critical role in modern search and recommendation systems. To model large-vocab sparse categorical features, typical recommender models learn a joint embedding space for both queries and items. With millions to billions of items to choose from, the quality of learned embedding representations is crucial to provide high quality recommendations to users with various interests. Inspired by the recent success in self-supervised representation learning research in both computer vision and natural language understanding, we propose a multi-task self-supervised learning (SSL) framework for sparse neural models in recommendations. Furthermore, we propose two highly generalizable self-supervised learning tasks: (i) Feature Masking (FM) and (ii) Feature Dropout (FD) within the proposed SSL framework. We evaluate our framework using two large-scale datasets with ~500M and 1B training examples respectively. Our results demonstrate that the proposed framework outperforms baseline models and state-of-the-art spread-out regularization techniques in the context of retrieval. The SSL framework shows larger improvement with less supervision compared to the counterparts.


  Access Paper or Ask Questions

How Much Are You Willing to Share? A "Poker-Styled" Selective Privacy Preserving Framework for Recommender Systems

Jun 04, 2018
Manoj Reddy Dareddy, Ariyam Das, Junghoo Cho, Carlo Zaniolo

Most industrial recommender systems rely on the popular collaborative filtering (CF) technique for providing personalized recommendations to its users. However, the very nature of CF is adversarial to the idea of user privacy, because users need to share their preferences with others in order to be grouped with like-minded people and receive accurate recommendations. While previous privacy preserving approaches have been successful inasmuch as they concealed user preference information to some extent from a centralized recommender system, they have also, nevertheless, incurred significant trade-offs in terms of privacy, scalability, and accuracy. They are also vulnerable to privacy breaches by malicious actors. In light of these observations, we propose a novel selective privacy preserving (SP2) paradigm that allows users to custom define the scope and extent of their individual privacies, by marking their personal ratings as either public (which can be shared) or private (which are never shared and stored only on the user device). Our SP2 framework works in two steps: (i) First, it builds an initial recommendation model based on the sum of all public ratings that have been shared by users and (ii) then, this public model is fine-tuned on each user's device based on the user private ratings, thus eventually learning a more accurate model. Furthermore, in this work, we introduce three different algorithms for implementing an end-to-end SP2 framework that can scale effectively from thousands to hundreds of millions of items. Our user survey shows that an overwhelming fraction of users are likely to rate much more items to improve the overall recommendations when they can control what ratings will be publicly shared with others.


  Access Paper or Ask Questions

Goal-driven Command Recommendations for Analysts

Nov 12, 2020
Samarth Aggarwal, Rohin Garg, Abhilasha Sancheti, Bhanu Prakash Reddy Guda, Iftikhar Ahamath Burhanuddin

Recent times have seen data analytics software applications become an integral part of the decision-making process of analysts. The users of these software applications generate a vast amount of unstructured log data. These logs contain clues to the user's goals, which traditional recommender systems may find difficult to model implicitly from the log data. With this assumption, we would like to assist the analytics process of a user through command recommendations. We categorize the commands into software and data categories based on their purpose to fulfill the task at hand. On the premise that the sequence of commands leading up to a data command is a good predictor of the latter, we design, develop, and validate various sequence modeling techniques. In this paper, we propose a framework to provide goal-driven data command recommendations to the user by leveraging unstructured logs. We use the log data of a web-based analytics software to train our neural network models and quantify their performance, in comparison to relevant and competitive baselines. We propose a custom loss function to tailor the recommended data commands according to the goal information provided exogenously. We also propose an evaluation metric that captures the degree of goal orientation of the recommendations. We demonstrate the promise of our approach by evaluating the models with the proposed metric and showcasing the robustness of our models in the case of adversarial examples, where the user activity is misaligned with selected goal, through offline evaluation.

* 14th ACM Conference on Recommender Systems (RecSys 2020) 

  Access Paper or Ask Questions

A Practical Two-stage Ranking Framework for Cross-market Recommendation

Apr 27, 2022
Zeyuan Chen, He Wang, Xiangyu Zhu, Haiyan Wu, Congcong Gu, Shumeng Liu, Jinchao Huang, Wei Zhang

Cross-market recommendation aims to recommend products to users in a resource-scarce target market by leveraging user behaviors from similar rich-resource markets, which is crucial for E-commerce companies but receives less research attention. In this paper, we present our detailed solution adopted in the cross-market recommendation contest, i.e., WSDM CUP 2022. To better utilize collaborative signals and similarities between target and source markets, we carefully consider multiple features as well as stacking learning models consisting of deep graph recommendation models (Graph Neural Network, DeepWalk, etc.) and traditional recommendation models (ItemCF, UserCF, Swing, etc.). Furthermore, We adopt tree-based ensembling methods, e.g., LightGBM, which show superior performance in prediction task to generate final results. We conduct comprehensive experiments on the XMRec dataset, verifying the effectiveness of our model. The proposed solution of our team WSDM_Coggle_ is selected as the second place submission.


  Access Paper or Ask Questions

Session-based Recommendation with Hypergraph Attention Networks

Dec 28, 2021
Jianling Wang, Kaize Ding, Ziwei Zhu, James Caverlee

Session-based recommender systems aim to improve recommendations in short-term sessions that can be found across many platforms. A critical challenge is to accurately model user intent with only limited evidence in these short sessions. For example, is a flower bouquet being viewed meant as part of a wedding purchase or for home decoration? Such different perspectives greatly impact what should be recommended next. Hence, this paper proposes a novel session-based recommendation system empowered by hypergraph attention networks. Three unique properties of the proposed approach are: (i) it constructs a hypergraph for each session to model the item correlations defined by various contextual windows in the session simultaneously, to uncover item meanings; (ii) it is equipped with hypergraph attention layers to generate item embeddings by flexibly aggregating the contextual information from correlated items in the session; and (iii) it aggregates the dynamic item representations for each session to infer the general purpose and current need, which is decoded to infer the next interesting item in the session. Through experiments on three benchmark datasets, we find the proposed model is effective in generating informative dynamic item embeddings and providing more accurate recommendations compared to the state-of-the-art.

* In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM) (pp. 82-90) 

  Access Paper or Ask Questions

Multilayer tensor factorization with applications to recommender systems

Nov 05, 2017
Xuan Bi, Annie Qu, Xiaotong Shen

Recommender systems have been widely adopted by electronic commerce and entertainment industries for individualized prediction and recommendation, which benefit consumers and improve business intelligence. In this article, we propose an innovative method, namely the recommendation engine of multilayers (REM), for tensor recommender systems. The proposed method utilizes the structure of a tensor response to integrate information from multiple modes, and creates an additional layer of nested latent factors to accommodate between-subjects dependency. One major advantage is that the proposed method is able to address the "cold-start" issue in the absence of information from new customers, new products or new contexts. Specifically, it provides more effective recommendations through sub-group information. To achieve scalable computation, we develop a new algorithm for the proposed method, which incorporates a maximum block improvement strategy into the cyclic blockwise-coordinate-descent algorithm. In theory, we investigate both algorithmic properties for global and local convergence, along with the asymptotic consistency of estimated parameters. Finally, the proposed method is applied in simulations and IRI marketing data with 116 million observations of product sales. Numerical studies demonstrate that the proposed method outperforms existing competitors in the literature.

* Accepted by the Annals of Statistics 

  Access Paper or Ask Questions

Extracting Implicit Social Relation for Social Recommendation Techniques in User Rating Prediction

Mar 17, 2017
Seyed Mohammad Taheri, Hamidreza Mahyar, Mohammad Firouzi, Elahe Ghalebi K., Radu Grosu, Ali Movaghar

Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest items to users that might be interesting for them. Recent studies illustrate that incorporating social trust in Matrix Factorization methods demonstrably improves accuracy of rating prediction. Such approaches mainly use the trust scores explicitly expressed by users. However, it is often challenging to have users provide explicit trust scores of each other. There exist quite a few works, which propose Trust Metrics to compute and predict trust scores between users based on their interactions. In this paper, first we present how social relation can be extracted from users' ratings to items by describing Hellinger distance between users in recommender systems. Then, we propose to incorporate the predicted trust scores into social matrix factorization models. By analyzing social relation extraction from three well-known real-world datasets, which both: trust and recommendation data available, we conclude that using the implicit social relation in social recommendation techniques has almost the same performance compared to the actual trust scores explicitly expressed by users. Hence, we build our method, called Hell-TrustSVD, on top of the state-of-the-art social recommendation technique to incorporate both the extracted implicit social relations and ratings given by users on the prediction of items for an active user. To the best of our knowledge, this is the first work to extend TrustSVD with extracted social trust information. The experimental results support the idea of employing implicit trust into matrix factorization whenever explicit trust is not available, can perform much better than the state-of-the-art approaches in user rating prediction.


  Access Paper or Ask Questions

Evaluation of Session-based Recommendation Algorithms

Oct 30, 2018
Malte Ludewig, Dietmar Jannach

Recommender systems help users find relevant items of interest, for example on e-commerce or media streaming sites. Most academic research is concerned with approaches that personalize the recommendations according to long-term user profiles. In many real-world applications, however, such long-term profiles often do not exist and recommendations therefore have to be made solely based on the observed behavior of a user during an ongoing session. Given the high practical relevance of the problem, an increased interest in this problem can be observed in recent years, leading to a number of proposals for session-based recommendation algorithms that typically aim to predict the user's immediate next actions. In this work, we present the results of an in-depth performance comparison of a number of such algorithms, using a variety of datasets and evaluation measures. Our comparison includes the most recent approaches based on recurrent neural networks like GRU4REC, factorized Markov model approaches such as FISM or FOSSIL, as well as simpler methods based, e.g., on nearest neighbor schemes. Our experiments reveal that algorithms of this latter class, despite their sometimes almost trivial nature, often perform equally well or significantly better than today's more complex approaches based on deep neural networks. Our results therefore suggest that there is substantial room for improvement regarding the development of more sophisticated session-based recommendation algorithms.


  Access Paper or Ask Questions

"It doesn't look good for a date": Transforming Critiques into Preferences for Conversational Recommendation Systems

Sep 15, 2021
Victor S. Bursztyn, Jennifer Healey, Nedim Lipka, Eunyee Koh, Doug Downey, Larry Birnbaum

Conversations aimed at determining good recommendations are iterative in nature. People often express their preferences in terms of a critique of the current recommendation (e.g., "It doesn't look good for a date"), requiring some degree of common sense for a preference to be inferred. In this work, we present a method for transforming a user critique into a positive preference (e.g., "I prefer more romantic") in order to retrieve reviews pertaining to potentially better recommendations (e.g., "Perfect for a romantic dinner"). We leverage a large neural language model (LM) in a few-shot setting to perform critique-to-preference transformation, and we test two methods for retrieving recommendations: one that matches embeddings, and another that fine-tunes an LM for the task. We instantiate this approach in the restaurant domain and evaluate it using a new dataset of restaurant critiques. In an ablation study, we show that utilizing critique-to-preference transformation improves recommendations, and that there are at least three general cases that explain this improved performance.

* Accepted to EMNLP 2021's main conference 

  Access Paper or Ask Questions

<<
53
54
55
56
57
58
59
60
61
62
63
64
65
>>