Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Privileged Graph Distillation for Cold Start Recommendation

May 31, 2021
Shuai Wang, Kun Zhang, Le Wu, Haiping Ma, Richang Hong, Meng Wang

The cold start problem in recommender systems is a long-standing challenge, which requires recommending to new users (items) based on attributes without any historical interaction records. In these recommendation systems, warm users (items) have privileged collaborative signals of interaction records compared to cold start users (items), and these Collaborative Filtering (CF) signals are shown to have competing performance for recommendation. Many researchers proposed to learn the correlation between collaborative signal embedding space and the attribute embedding space to improve the cold start recommendation, in which user and item categorical attributes are available in many online platforms. However, the cold start recommendation is still limited by two embedding spaces modeling and simple assumptions of space transformation. As user-item interaction behaviors and user (item) attributes naturally form a heterogeneous graph structure, in this paper, we propose a privileged graph distillation model~(PGD). The teacher model is composed of a heterogeneous graph structure for warm users and items with privileged CF links. The student model is composed of an entity-attribute graph without CF links. Specifically, the teacher model can learn better embeddings of each entity by injecting complex higher-order relationships from the constructed heterogeneous graph. The student model can learn the distilled output with privileged CF embeddings from the teacher embeddings. Our proposed model is generally applicable to different cold start scenarios with new user, new item, or new user-new item. Finally, extensive experimental results on the real-world datasets clearly show the effectiveness of our proposed model on different types of cold start problems, with average $6.6\%, 5.6\%, $ and $17.1\%$ improvement over state-of-the-art baselines on three datasets, respectively.

* 10 pages,5 figures 

  Access Paper or Ask Questions

Learning the Optimal Recommendation from Explorative Users

Oct 06, 2021
Fan Yao, Chuanhao Li, Denis Nekipelov, Hongning Wang, Haifeng Xu

We propose a new problem setting to study the sequential interactions between a recommender system and a user. Instead of assuming the user is omniscient, static, and explicit, as the classical practice does, we sketch a more realistic user behavior model, under which the user: 1) rejects recommendations if they are clearly worse than others; 2) updates her utility estimation based on rewards from her accepted recommendations; 3) withholds realized rewards from the system. We formulate the interactions between the system and such an explorative user in a $K$-armed bandit framework and study the problem of learning the optimal recommendation on the system side. We show that efficient system learning is still possible but is more difficult. In particular, the system can identify the best arm with probability at least $1-\delta$ within $O(1/\delta)$ interactions, and we prove this is tight. Our finding contrasts the result for the problem of best arm identification with fixed confidence, in which the best arm can be identified with probability $1-\delta$ within $O(\log(1/\delta))$ interactions. This gap illustrates the inevitable cost the system has to pay when it learns from an explorative user's revealed preferences on its recommendations rather than from the realized rewards.

  Access Paper or Ask Questions

A Multi-Objective Optimization Method for Achieving Two-sided Fairness in E-commerce Recommendation

May 06, 2021
Haolun Wu, Chen Ma, Bhaskar Mitra, Fernando Diaz, Xue Liu

Two-sided marketplaces are an important component of many existing Internet services like Airbnb and Amazon, which have both consumers (e.g. users) and producers (e.g. retailers). Traditionally, the recommendation system in these platforms mainly focuses on maximizing customer satisfaction by recommending the most relevant items based on the learned user preference. However, it has been shown in previous works that solely optimizing the satisfaction of customers may lead to unfair exposure of items, which jeopardizes the benefits of producers. To tackle this problem, we propose a fairness-aware recommendation framework by using multi-objective optimization, Multi-FR, to adaptively balance the objectives between consumers and producers. In particular, Multi-FR adopts the multi-gradient descent to generate a Pareto set of solutions, where the most appropriate one is selected from the Pareto set. In addition, four fairness metrics/constraints are applied to make the recommendation results on both the consumer and producer side fair. We extensively evaluate our model on three real-world datasets, comparing with grid-search methods and using a variety of performance metrics. The experimental results demonstrate that Multi-FR can improve the recommendation fairness on both the consumer and producer side with little drop in recommendation quality, also outperforming several state-of-the-art fair ranking approaches.

* 11 pages 

  Access Paper or Ask Questions

Generating Self-Serendipity Preference in Recommender Systems for Addressing Cold Start Problems

Apr 27, 2022
Yuanbo Xu, Yongjian Yang, En Wang

Classical accuracy-oriented Recommender Systems (RSs) typically face the cold-start problem and the filter-bubble problem when users suffer the familiar, repeated, and even predictable recommendations, making them boring and unsatisfied. To address the above issues, serendipity-oriented RSs are proposed to recommend appealing and valuable items significantly deviating from users' historical interactions and thus satisfying them by introducing unexplored but relevant candidate items to them. In this paper, we devise a novel serendipity-oriented recommender system (\textbf{G}enerative \textbf{S}elf-\textbf{S}erendipity \textbf{R}ecommender \textbf{S}ystem, \textbf{GS$^2$-RS}) that generates users' self-serendipity preferences to enhance the recommendation performance. Specifically, this model extracts users' interest and satisfaction preferences, generates virtual but convincible neighbors' preferences from themselves, and achieves their self-serendipity preference. Then these preferences are injected into the rating matrix as additional information for RS models. Note that GS$^2$-RS can not only tackle the cold-start problem but also provides diverse but relevant recommendations to relieve the filter-bubble problem. Extensive experiments on benchmark datasets illustrate that the proposed GS$^2$-RS model can significantly outperform the state-of-the-art baseline approaches in serendipity measures with a stable accuracy performance.

* This paper is an original work for tackling filter bubble and cold start problem in a uniform framework 

  Access Paper or Ask Questions

Interpretable Contextual Team-aware Item Recommendation: Application in Multiplayer Online Battle Arena Games

Jul 30, 2020
Andrés Villa, Vladimir Araujo, Francisca Cattan, Denis Parra

The video game industry has adopted recommendation systems to boost users interest with a focus on game sales. Other exciting applications within video games are those that help the player make decisions that would maximize their playing experience, which is a desirable feature in real-time strategy video games such as Multiplayer Online Battle Arena (MOBA) like as DotA and LoL. Among these tasks, the recommendation of items is challenging, given both the contextual nature of the game and how it exposes the dependence on the formation of each team. Existing works on this topic do not take advantage of all the available contextual match data and dismiss potentially valuable information. To address this problem we develop TTIR, a contextual recommender model derived from the Transformer neural architecture that suggests a set of items to every team member, based on the contexts of teams and roles that describe the match. TTIR outperforms several approaches and provides interpretable recommendations through visualization of attention weights. Our evaluation indicates that both the Transformer architecture and the contextual information are essential to get the best results for this item recommendation task. Furthermore, a preliminary user survey indicates the usefulness of attention weights for explaining recommendations as well as ideas for future work. The code and dataset are available at:

  Access Paper or Ask Questions

Explainable Recommendation via Interpretable Feature Mapping and Evaluation of Explainability

Jul 12, 2020
Deng Pan, Xiangrui Li, Xin Li, Dongxiao Zhu

Latent factor collaborative filtering (CF) has been a widely used technique for recommender system by learning the semantic representations of users and items. Recently, explainable recommendation has attracted much attention from research community. However, trade-off exists between explainability and performance of the recommendation where metadata is often needed to alleviate the dilemma. We present a novel feature mapping approach that maps the uninterpretable general features onto the interpretable aspect features, achieving both satisfactory accuracy and explainability in the recommendations by simultaneous minimization of rating prediction loss and interpretation loss. To evaluate the explainability, we propose two new evaluation metrics specifically designed for aspect-level explanation using surrogate ground truth. Experimental results demonstrate a strong performance in both recommendation and explaining explanation, eliminating the need for metadata. Code is available from

* IJCAI 2020, pages 2690-2696 
* Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI) 

  Access Paper or Ask Questions

Recommender Systems for the Internet of Things: A Survey

Jul 14, 2020
May Altulyan, Lina Yao, Xianzhi Wang, Chaoran Huang, Salil S Kanhere, Quan Z Sheng

Recommendation represents a vital stage in developing and promoting the benefits of the Internet of Things (IoT). Traditional recommender systems fail to exploit ever-growing, dynamic, and heterogeneous IoT data. This paper presents a comprehensive review of the state-of-the-art recommender systems, as well as related techniques and application in the vibrant field of IoT. We discuss several limitations of applying recommendation systems to IoT and propose a reference framework for comparing existing studies to guide future research and practices.

  Access Paper or Ask Questions

The Architectural Implications of Facebook's DNN-based Personalized Recommendation

Jun 18, 2019
Udit Gupta, Xiaodong Wang, Maxim Naumov, Carole-Jean Wu, Brandon Reagen, David Brooks, Bradford Cottel, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, Xuan Zhang

The widespread application of deep learning has changed the landscape of computation in the data center. In particular, personalized recommendation for content ranking is now largely accomplished leveraging deep neural networks. However, despite the importance of these models and the amount of compute cycles they consume, relatively little research attention has been devoted to systems for recommendation. To facilitate research and to advance the understanding of these workloads, this paper presents a set of real-world, production-scale DNNs for personalized recommendation coupled with relevant performance metrics for evaluation. In addition to releasing a set of open-source workloads, we conduct in-depth analysis that underpins future system design and optimization for at-scale recommendation: Inference latency varies by 60% across three Intel server generations, batching and co-location of inferences can drastically improve latency-bounded throughput, and the diverse composition of recommendation models leads to different optimization strategies.

* 11 pages 

  Access Paper or Ask Questions

On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation

Apr 23, 2022
Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Guandong Xu, Nguyen Quoc Viet Hung

Modern recommender systems operate in a fully server-based fashion. To cater to millions of users, the frequent model maintaining and the high-speed processing for concurrent user requests are required, which comes at the cost of a huge carbon footprint. Meanwhile, users need to upload their behavior data even including the immediate environmental context to the server, raising the public concern about privacy. On-device recommender systems circumvent these two issues with cost-conscious settings and local inference. However, due to the limited memory and computing resources, on-device recommender systems are confronted with two fundamental challenges: (1) how to reduce the size of regular models to fit edge devices? (2) how to retain the original capacity? Previous research mostly adopts tensor decomposition techniques to compress the regular recommendation model with limited compression ratio so as to avoid drastic performance degradation. In this paper, we explore ultra-compact models for next-item recommendation, by loosing the constraint of dimensionality consistency in tensor decomposition. Meanwhile, to compensate for the capacity loss caused by compression, we develop a self-supervised knowledge distillation framework which enables the compressed model (student) to distill the essential information lying in the raw data, and improves the long-tail item recommendation through an embedding-recombination strategy with the original model (teacher). The extensive experiments on two benchmarks demonstrate that, with 30x model size reduction, the compressed model almost comes with no accuracy loss, and even outperforms its uncompressed counterpart in most cases.

* To Appear in SIGIR'22 

  Access Paper or Ask Questions