Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Toward Simulating Environments in Reinforcement Learning Based Recommendations

Jun 27, 2019
Xiangyu Zhao, Long Xia, Zhuoye Ding, Dawei Yin, Jiliang Tang

With the recent advances in Reinforcement Learning (RL), there have been tremendous interests in employing RL for recommender systems. RL-based recommender systems have two key advantages: (i) they can continuously update their recommendation strategies according to users' real-time feedback, and (ii) the optimal strategy maximizes the long-term reward from users, such as the total revenue of a recommendation session. However, directly training and evaluating a new RL-based recommendation algorithm needs to collect users' real-time feedback in the real system, which is time and efforts consuming and could negatively impact on users' experiences. Thus, it calls for a user simulator that can mimic real users' behaviors where we can pre-train and evaluate new recommendation algorithms. Simulating users' behaviors in a dynamic system faces immense challenges -- (i) the underlining item distribution is complex, and (ii) historical logs for each user are limited. In this paper, we develop a user simulator base on Generative Adversarial Network (GAN). To be specific, we design the generator to capture the underlining distribution of users' historical logs and generate realistic logs that can be considered as augmentations of real logs; while the discriminator is developed to not only distinguish real and fake logs but also predict users' behaviors. The experimental results based on real-world e-commerce data demonstrate the effectiveness of the proposed simulator. Further experiments have been conducted to understand the importance of each component in the simulator.

  Access Paper or Ask Questions

One-Shot Session Recommendation Systems with Combinatorial Items

Jul 05, 2016
Yahel David, Dotan Di Castro, Zohar Karnin

In recent years, content recommendation systems in large websites (or \emph{content providers}) capture an increased focus. While the type of content varies, e.g.\ movies, articles, music, advertisements, etc., the high level problem remains the same. Based on knowledge obtained so far on the user, recommend the most desired content. In this paper we present a method to handle the well known user-cold-start problem in recommendation systems. In this scenario, a recommendation system encounters a new user and the objective is to present items as relevant as possible with the hope of keeping the user's session as long as possible. We formulate an optimization problem aimed to maximize the length of this initial session, as this is believed to be the key to have the user come back and perhaps register to the system. In particular, our model captures the fact that a single round with low quality recommendation is likely to terminate the session. In such a case, we do not proceed to the next round as the user leaves the system, possibly never to seen again. We denote this phenomenon a \emph{One-Shot Session}. Our optimization problem is formulated as an MDP where the action space is of a combinatorial nature as we recommend in each round, multiple items. This huge action space presents a computational challenge making the straightforward solution intractable. We analyze the structure of the MDP to prove monotone and submodular like properties that allow a computationally efficient solution via a method denoted by \emph{Greedy Value Iteration} (G-VI).

  Access Paper or Ask Questions

Multi-Modal Adversarial Autoencoders for Recommendations of Citations and Subject Labels

Jul 22, 2019
Lukas Galke, Florian Mai, Iacopo Vagliano, Ansgar Scherp

We present multi-modal adversarial autoencoders for recommendation and evaluate them on two different tasks: citation recommendation and subject label recommendation. We analyze the effects of adversarial regularization, sparsity, and different input modalities. By conducting 408 experiments, we show that adversarial regularization consistently improves the performance of autoencoders for recommendation. We demonstrate, however, that the two tasks differ in the semantics of item co-occurrence in the sense that item co-occurrence resembles relatedness in case of citations, yet implies diversity in case of subject labels. Our results reveal that supplying the partial item set as input is only helpful, when item co-occurrence resembles relatedness. When facing a new recommendation task it is therefore crucial to consider the semantics of item co-occurrence for the choice of an appropriate model.

* Published in: UMAP '18 Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization Pages 197-205 

  Access Paper or Ask Questions

Online Bayesian Recommendation with No Regret

Feb 12, 2022
Yiding Feng, Wei Tang, Haifeng Xu

We introduce and study the online Bayesian recommendation problem for a platform, who can observe a utility-relevant state of a product, repeatedly interacting with a population of myopic users through an online recommendation mechanism. This paradigm is common in a wide range of scenarios in the current Internet economy. For each user with her own private preference and belief, the platform commits to a recommendation strategy to utilize his information advantage on the product state to persuade the self-interested user to follow the recommendation. The platform does not know user's preferences and beliefs, and has to use an adaptive recommendation strategy to persuade with gradually learning user's preferences and beliefs in the process. We aim to design online learning policies with no Stackelberg regret for the platform, i.e., against the optimum policy in hindsight under the assumption that users will correspondingly adapt their behaviors to the benchmark policy. Our first result is an online policy that achieves double logarithm regret dependence on the number of rounds. We then present a hardness result showing that no adaptive online policy can achieve regret with better dependency on the number of rounds. Finally, by formulating the platform's problem as optimizing a linear program with membership oracle access, we present our second online policy that achieves regret with polynomial dependence on the number of states but logarithm dependence on the number of rounds.

  Access Paper or Ask Questions

Deep Conversational Recommender in Travel

Jun 25, 2019
Lizi Liao, Ryuichi Takanobu, Yunshan Ma, Xun Yang, Minlie Huang, Tat-Seng Chua

When traveling to a foreign country, we are often in dire need of an intelligent conversational agent to provide instant and informative responses to our various queries. However, to build such a travel agent is non-trivial. First of all, travel naturally involves several sub-tasks such as hotel reservation, restaurant recommendation and taxi booking etc, which invokes the need for global topic control. Secondly, the agent should consider various constraints like price or distance given by the user to recommend an appropriate venue. In this paper, we present a Deep Conversational Recommender (DCR) and apply to travel. It augments the sequence-to-sequence (seq2seq) models with a neural latent topic component to better guide response generation and make the training easier. To consider the various constraints for venue recommendation, we leverage a graph convolutional network (GCN) based approach to capture the relationships between different venues and the match between venue and dialog context. For response generation, we combine the topic-based component with the idea of pointer networks, which allows us to effectively incorporate recommendation results. We perform extensive evaluation on a multi-turn task-oriented dialog dataset in travel domain and the results show that our method achieves superior performance as compared to a wide range of baselines.

* 12 pages, 7 figures, submitted to TKDE. arXiv admin note: text overlap with arXiv:1809.07070 by other authors 

  Access Paper or Ask Questions

Multi-Behavior Enhanced Recommendation with Cross-Interaction Collaborative Relation Modeling

Jan 07, 2022
Lianghao Xia, Chao Huang, Yong Xu, Peng Dai, Mengyin Lu, Liefeng Bo

Many previous studies aim to augment collaborative filtering with deep neural network techniques, so as to achieve better recommendation performance. However, most existing deep learning-based recommender systems are designed for modeling singular type of user-item interaction behavior, which can hardly distill the heterogeneous relations between user and item. In practical recommendation scenarios, there exist multityped user behaviors, such as browse and purchase. Due to the overlook of user's multi-behavioral patterns over different items, existing recommendation methods are insufficient to capture heterogeneous collaborative signals from user multi-behavior data. Inspired by the strength of graph neural networks for structured data modeling, this work proposes a Graph Neural Multi-Behavior Enhanced Recommendation (GNMR) framework which explicitly models the dependencies between different types of user-item interactions under a graph-based message passing architecture. GNMR devises a relation aggregation network to model interaction heterogeneity, and recursively performs embedding propagation between neighboring nodes over the user-item interaction graph. Experiments on real-world recommendation datasets show that our GNMR consistently outperforms state-of-the-art methods. The source code is available at

* Published on ICDE 2021 

  Access Paper or Ask Questions

User-Centric Conversational Recommendation with Multi-Aspect User Modeling

Apr 25, 2022
Shuokai Li, Ruobing Xie, Yongchun Zhu, Xiang Ao, Fuzhen Zhuang, Qing He

Conversational recommender systems (CRS) aim to provide highquality recommendations in conversations. However, most conventional CRS models mainly focus on the dialogue understanding of the current session, ignoring other rich multi-aspect information of the central subjects (i.e., users) in recommendation. In this work, we highlight that the user's historical dialogue sessions and look-alike users are essential sources of user preferences besides the current dialogue session in CRS. To systematically model the multi-aspect information, we propose a User-Centric Conversational Recommendation (UCCR) model, which returns to the essence of user preference learning in CRS tasks. Specifically, we propose a historical session learner to capture users' multi-view preferences from knowledge, semantic, and consuming views as supplements to the current preference signals. A multi-view preference mapper is conducted to learn the intrinsic correlations among different views in current and historical sessions via self-supervised objectives. We also design a temporal look-alike user selector to understand users via their similar users. The learned multi-aspect multi-view user preferences are then used for the recommendation and dialogue generation. In experiments, we conduct comprehensive evaluations on both Chinese and English CRS datasets. The significant improvements over competitive models in both recommendation and dialogue generation verify the superiority of UCCR.

* Accepted by SIGIR 2022 

  Access Paper or Ask Questions

Multi-Auxiliary Augmented Collaborative Variational Auto-encoder for Tag Recommendation

Apr 20, 2022
Jing Yi, Xubin Ren, Zhenzhong Chen

Recommending appropriate tags to items can facilitate content organization, retrieval, consumption and other applications, where hybrid tag recommender systems have been utilized to integrate collaborative information and content information for better recommendations. In this paper, we propose a multi-auxiliary augmented collaborative variational auto-encoder (MA-CVAE) for tag recommendation, which couples item collaborative information and item multi-auxiliary information, i.e., content and social graph, by defining a generative process. Specifically, the model learns deep latent embeddings from different item auxiliary information using variational auto-encoders (VAE), which could form a generative distribution over each auxiliary information by introducing a latent variable parameterized by deep neural network. Moreover, to recommend tags for new items, item multi-auxiliary latent embeddings are utilized as a surrogate through the item decoder for predicting recommendation probabilities of each tag, where reconstruction losses are added in the training phase to constrict the generation for feedback predictions via different auxiliary embeddings. In addition, an inductive variational graph auto-encoder is designed where new item nodes could be inferred in the test phase, such that item social embeddings could be exploited for new items. Extensive experiments on MovieLens and citeulike datasets demonstrate the effectiveness of our method.

  Access Paper or Ask Questions

Exploiting Positional Information for Session-based Recommendation

Jul 09, 2021
Ruihong Qiu, Zi Huang, Tong Chen, Hongzhi Yin

For present e-commerce platforms, session-based recommender systems are developed to predict users' preference for next-item recommendation. Although a session can usually reflect a user's current preference, a local shift of the user's intention within the session may still exist. Specifically, the interactions that take place in the early positions within a session generally indicate the user's initial intention, while later interactions are more likely to represent the latest intention. Such positional information has been rarely considered in existing methods, which restricts their ability to capture the significance of interactions at different positions. To thoroughly exploit the positional information within a session, a theoretical framework is developed in this paper to provide an in-depth analysis of the positional information. We formally define the properties of forward-awareness and backward-awareness to evaluate the ability of positional encoding schemes in capturing the initial and the latest intention. According to our analysis, existing positional encoding schemes are generally forward-aware only, which can hardly represent the dynamics of the intention in a session. To enhance the positional encoding scheme for the session-based recommendation, a dual positional encoding (DPE) is proposed to account for both forward-awareness and backward-awareness. Based on DPE, we propose a novel Positional Recommender (PosRec) model with a well-designed Position-aware Gated Graph Neural Network module to fully exploit the positional information for session-based recommendation tasks. Extensive experiments are conducted on two e-commerce benchmark datasets, Yoochoose and Diginetica and the experimental results show the superiority of the PosRec by comparing it with the state-of-the-art session-based recommender models.

  Access Paper or Ask Questions