Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Revisit Recommender System in the Permutation Prospective

Feb 24, 2021
Yufei Feng, Yu Gong, Fei Sun, Qingwen Liu, Wenwu Ou

Recommender systems (RS) work effective at alleviating information overload and matching user interests in various web-scale applications. Most RS retrieve the user's favorite candidates and then rank them by the rating scores in the greedy manner. In the permutation prospective, however, current RS come to reveal the following two limitations: 1) They neglect addressing the permutation-variant influence within the recommended results; 2) Permutation consideration extends the latent solution space exponentially, and current RS lack the ability to evaluate the permutations. Both drive RS away from the permutation-optimal recommended results and better user experience. To approximate the permutation-optimal recommended results effectively and efficiently, we propose a novel permutation-wise framework PRS in the re-ranking stage of RS, which consists of Permutation-Matching (PMatch) and Permutation-Ranking (PRank) stages successively. Specifically, the PMatch stage is designed to obtain the candidate list set, where we propose the FPSA algorithm to generate multiple candidate lists via the permutation-wise and goal-oriented beam search algorithm. Afterwards, for the candidate list set, the PRank stage provides a unified permutation-wise ranking criterion named LR metric, which is calculated by the rating scores of elaborately designed permutation-wise model DPWN. Finally, the list with the highest LR score is recommended to the user. Empirical results show that PRS consistently and significantly outperforms state-of-the-art methods. Moreover, PRS has achieved a performance improvement of 11.0% on PV metric and 8.7% on IPV metric after the successful deployment in one popular recommendation scenario of Taobao application.

* Under the review of the KDD2021 Applied Data Science track 

  Access Paper or Ask Questions

Personalized Music Recommendation with Triplet Network

Aug 10, 2019
Haoting Liang, Donghuo Zeng, Yi Yu, Keizo Oyama

Since many online music services emerged in recent years so that effective music recommendation systems are desirable. Some common problems in recommendation system like feature representations, distance measure and cold start problems are also challenges for music recommendation. In this paper, I proposed a triplet neural network, exploiting both positive and negative samples to learn the representation and distance measure between users and items, to solve the recommendation task.

* DEIM 2019 
* 1 figure; 1 table 

  Access Paper or Ask Questions

MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation

Jul 31, 2019
Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, Sehee Chung

This paper proposes a recommender system to alleviate the cold-start problem that can estimate user preferences based on only a small number of items. To identify a user's preference in the cold state, existing recommender systems, such as Netflix, initially provide items to a user; we call those items evidence candidates. Recommendations are then made based on the items selected by the user. Previous recommendation studies have two limitations: (1) the users who consumed a few items have poor recommendations and (2) inadequate evidence candidates are used to identify user preferences. We propose a meta-learning-based recommender system called MeLU to overcome these two limitations. From meta-learning, which can rapidly adopt new task with a few examples, MeLU can estimate new user's preferences with a few consumed items. In addition, we provide an evidence candidate selection strategy that determines distinguishing items for customized preference estimation. We validate MeLU with two benchmark datasets, and the proposed model reduces at least 5.92% mean absolute error than two comparative models on the datasets. We also conduct a user study experiment to verify the evidence selection strategy.

* Accepted as a full paper at KDD 2019 

  Access Paper or Ask Questions

Personalized Recommendation of PoIs to People with Autism

Apr 27, 2020
Noemi Mauro, Liliana Ardissono, Federica Cena

The suggestion of Points of Interest to people with Autism Spectrum Disorder (ASD) challenges recommender systems research because these users' perception of places is influenced by idiosyncratic sensory aversions which can mine their experience by causing stress and anxiety. Therefore, managing individual preferences is not enough to provide these people with suitable recommendations. In order to address this issue, we propose a Top-N recommendation model that combines the user's idiosyncratic aversions with her/his preferences in a personalized way to suggest the most compatible and likable Points of Interest for her/him. We are interested in finding a user-specific balance of compatibility and interest within a recommendation model that integrates heterogeneous evaluation criteria to appropriately take these aspects into account. We tested our model on both ASD and "neurotypical" people. The evaluation results show that, on both groups, our model outperforms in accuracy and ranking capability the recommender systems based on item compatibility, on user preferences, or which integrate these two aspects by means of a uniform evaluation model.

* Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization (UMAP 2020) 

  Access Paper or Ask Questions

Learning Robust Recommender from Noisy Implicit Feedback

Dec 02, 2021
Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, Tat-Seng Chua

The ubiquity of implicit feedback makes it indispensable for building recommender systems. However, it does not actually reflect the actual satisfaction of users. For example, in E-commerce, a large portion of clicks do not translate to purchases, and many purchases end up with negative reviews. As such, it is of importance to account for the inevitable noises in implicit feedback. However, little work on recommendation has taken the noisy nature of implicit feedback into consideration. In this work, we explore the central theme of denoising implicit feedback for recommender learning, including training and inference. By observing the process of normal recommender training, we find that noisy feedback typically has large loss values in the early stages. Inspired by this observation, we propose a new training strategy named Adaptive Denoising Training (ADT), which adaptively prunes the noisy interactions by two paradigms (i.e., Truncated Loss and Reweighted Loss). Furthermore, we consider extra feedback (e.g., rating) as auxiliary signal and propose three strategies to incorporate extra feedback into ADT: finetuning, warm-up training, and colliding inference. We instantiate the two paradigms on the widely used binary cross-entropy loss and test them on three representative recommender models. Extensive experiments on three benchmarks demonstrate that ADT significantly improves the quality of recommendation over normal training without using extra feedback. Besides, the proposed three strategies for using extra feedback largely enhance the denoising ability of ADT.

* arXiv admin note: text overlap with arXiv:2006.04153 

  Access Paper or Ask Questions

Ensemble Learning Based Classification Algorithm Recommendation

Jan 15, 2021
Guangtao Wang, Qinbao Song, Xiaoyan Zhu

Recommending appropriate algorithms to a classification problem is one of the most challenging issues in the field of data mining. The existing algorithm recommendation models are generally constructed on only one kind of meta-features by single learners. Considering that i) ensemble learners usually show better performance and ii) different kinds of meta-features characterize the classification problems in different viewpoints independently, and further the models constructed with different sets of meta-features will be complementary with each other and applicable for ensemble. This paper proposes an ensemble learning-based algorithm recommendation method. To evaluate the proposed recommendation method, extensive experiments with 13 well-known candidate classification algorithms and five different kinds of meta-features are conducted on 1090 benchmark classification problems. The results show the effectiveness of the proposed ensemble learning based recommendation method.


  Access Paper or Ask Questions

Using Shortlists to Support Decision Making and Improve Recommender System Performance

Feb 08, 2016
Tobias Schnabel, Paul N. Bennett, Susan T. Dumais, Thorsten Joachims

In this paper, we study shortlists as an interface component for recommender systems with the dual goal of supporting the user's decision process, as well as improving implicit feedback elicitation for increased recommendation quality. A shortlist is a temporary list of candidates that the user is currently considering, e.g., a list of a few movies the user is currently considering for viewing. From a cognitive perspective, shortlists serve as digital short-term memory where users can off-load the items under consideration -- thereby decreasing their cognitive load. From a machine learning perspective, adding items to the shortlist generates a new implicit feedback signal as a by-product of exploration and decision making which can improve recommendation quality. Shortlisting therefore provides additional data for training recommendation systems without the increases in cognitive load that requesting explicit feedback would incur. We perform an user study with a movie recommendation setup to compare interfaces that offer shortlist support with those that do not. From the user studies we conclude: (i) users make better decisions with a shortlist; (ii) users prefer an interface with shortlist support; and (iii) the additional implicit feedback from sessions with a shortlist improves the quality of recommendations by nearly a factor of two.

* 11 pages in WWW 2016 

  Access Paper or Ask Questions

An Intelligent Multi-Agent Recommender System for Human Capacity Building

Jun 13, 2008
Vukosi N. Marivate, George Ssali, Tshilidzi Marwala

This paper presents a Multi-Agent approach to the problem of recommending training courses to engineering professionals. The recommendation system is built as a proof of concept and limited to the electrical and mechanical engineering disciplines. Through user modelling and data collection from a survey, collaborative filtering recommendation is implemented using intelligent agents. The agents work together in recommending meaningful training courses and updating the course information. The system uses a users profile and keywords from courses to rank courses. A ranking accuracy for courses of 90% is achieved while flexibility is achieved using an agent that retrieves information autonomously using data mining techniques from websites. This manner of recommendation is scalable and adaptable. Further improvements can be made using clustering and recording user feedback.

* Proceedings of the 14th IEEE Mediterranean Electrotechnical Conference, 2008, pages 909 to 915 

  Access Paper or Ask Questions

RevCore: Review-augmented Conversational Recommendation

Jun 02, 2021
Yu Lu, Junwei Bao, Yan Song, Zichen Ma, Shuguang Cui, Youzheng Wu, Xiaodong He

Existing conversational recommendation (CR) systems usually suffer from insufficient item information when conducted on short dialogue history and unfamiliar items. Incorporating external information (e.g., reviews) is a potential solution to alleviate this problem. Given that reviews often provide a rich and detailed user experience on different interests, they are potential ideal resources for providing high-quality recommendations within an informative conversation. In this paper, we design a novel end-to-end framework, namely, Review-augmented Conversational Recommender (RevCore), where reviews are seamlessly incorporated to enrich item information and assist in generating both coherent and informative responses. In detail, we extract sentiment-consistent reviews, perform review-enriched and entity-based recommendations for item suggestions, as well as use a review-attentive encoder-decoder for response generation. Experimental results demonstrate the superiority of our approach in yielding better performance on both recommendation and conversation responding.

* Accepted by ACL-Findings 2021. 13 pages, 3 figures, and 10 tables 

  Access Paper or Ask Questions

Aspect-driven User Preference and News Representation Learning for News Recommendation

Oct 12, 2021
Rongyao Wang, Wenpeng Lu, Shoujin Wang, Xueping Peng, Hao Wu, Qian Zhang

News recommender systems are essential for helping users to efficiently and effectively find out those interesting news from a large amount of news. Most of existing news recommender systems usually learn topic-level representations of users and news for recommendation, and neglect to learn more informative aspect-level features of users and news for more accurate recommendation. As a result, they achieve limited recommendation performance. Aiming at addressing this deficiency, we propose a novel Aspect-driven News Recommender System (ANRS) built on aspect-level user preference and news representation learning. Here, \textit{news aspect} is fine-grained semantic information expressed by a set of related words, which indicates specific aspects described by the news. In ANRS, \textit{news aspect-level encoder} and \textit{user aspect-level encoder} are devised to learn the fine-grained aspect-level representations of user's preferences and news characteristics respectively, which are fed into \textit{click predictor} to judge the probability of the user clicking the candidate news. Extensive experiments are done on the commonly used real-world dataset MIND, which demonstrate the superiority of our method compared with representative and state-of-the-art methods.

* 20 pages 

  Access Paper or Ask Questions

<<
40
41
42
43
44
45
46
47
48
49
50
51
52
>>