Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Impact of Physical Activity on Sleep:A Deep Learning Based Exploration

Jul 24, 2016
Aarti Sathyanarayana, Shafiq Joty, Luis Fernandez-Luque, Ferda Ofli, Jaideep Srivastava, Ahmed Elmagarmid, Shahrad Taheri, Teresa Arora

The importance of sleep is paramount for maintaining physical, emotional and mental wellbeing. Though the relationship between sleep and physical activity is known to be important, it is not yet fully understood. The explosion in popularity of actigraphy and wearable devices, provides a unique opportunity to understand this relationship. Leveraging this information source requires new tools to be developed to facilitate data-driven research for sleep and activity patient-recommendations. In this paper we explore the use of deep learning to build sleep quality prediction models based on actigraphy data. We first use deep learning as a pure model building device by performing human activity recognition (HAR) on raw sensor data, and using deep learning to build sleep prediction models. We compare the deep learning models with those build using classical approaches, i.e. logistic regression, support vector machines, random forest and adaboost. Secondly, we employ the advantage of deep learning with its ability to handle high dimensional datasets. We explore several deep learning models on the raw wearable sensor output without performing HAR or any other feature extraction. Our results show that using a convolutional neural network on the raw wearables output improves the predictive value of sleep quality from physical activity, by an additional 8% compared to state-of-the-art non-deep learning approaches, which itself shows a 15% improvement over current practice. Moreover, utilizing deep learning on raw data eliminates the need for data pre-processing and simplifies the overall workflow to analyze actigraphy data for sleep and physical activity research.

* JMIR Mhealth Uhealth 2016;4(4):e125 
  
Access Paper or Ask Questions

Scientific and Technological Information Oriented Semantics-adversarial and Media-adversarial Cross-media Retrieval

Mar 16, 2022
Ang Li, Junping Du, Feifei Kou, Zhe Xue, Xin Xu, Mingying Xu, Yang Jiang

Cross-media retrieval of scientific and technological information is one of the important tasks in the cross-media study. Cross-media scientific and technological information retrieval obtain target information from massive multi-source and heterogeneous scientific and technological resources, which helps to design applications that meet users' needs, including scientific and technological information recommendation, personalized scientific and technological information retrieval, etc. The core of cross-media retrieval is to learn a common subspace, so that data from different media can be directly compared with each other after being mapped into this subspace. In subspace learning, existing methods often focus on modeling the discrimination of intra-media data and the invariance of inter-media data after mapping; however, they ignore the semantic consistency of inter-media data before and after mapping and media discrimination of intra-semantics data, which limit the result of cross-media retrieval. In light of this, we propose a scientific and technological information oriented Semantics-adversarial and Media-adversarial Cross-media Retrieval method (SMCR) to find an effective common subspace. Specifically, SMCR minimizes the loss of inter-media semantic consistency in addition to modeling intra-media semantic discrimination, to preserve semantic similarity before and after mapping. Furthermore, SMCR constructs a basic feature mapping network and a refined feature mapping network to jointly minimize the media discriminative loss within semantics, so as to enhance the feature mapping network's ability to confuse the media discriminant network. Experimental results on two datasets demonstrate that the proposed SMCR outperforms state-of-the-art methods in cross-media retrieval.

* 9 pages,2 figures 
  
Access Paper or Ask Questions

Learning from eXtreme Bandit Feedback

Sep 27, 2020
Romain Lopez, Inderjit Dhillon, Michael I. Jordan

We study the problem of batch learning from bandit feedback in the setting of extremely large action spaces. Learning from extreme bandit feedback is ubiquitous in recommendation systems, in which billions of decisions are made over sets consisting of millions of choices in a single day, yielding massive observational data. In these large-scale real-world applications, supervised learning frameworks such as eXtreme Multi-label Classification (XMC) are widely used despite the fact that they incur significant biases due to the mismatch between bandit feedback and supervised labels. Such biases can be mitigated by importance sampling techniques, but these techniques suffer from impractical variance when dealing with a large number of actions. In this paper, we introduce a selective importance sampling estimator (sIS) that operates in a significantly more favorable bias-variance regime. The sIS estimator is obtained by performing importance sampling on the conditional expectation of the reward with respect to a small subset of actions for each instance (a form of Rao-Blackwellization). We employ this estimator in a novel algorithmic procedure---named Policy Optimization for eXtreme Models (POXM)---for learning from bandit feedback on XMC tasks. In POXM, the selected actions for the sIS estimator are the top-p actions of the logging policy, where p is adjusted from the data and is significantly smaller than the size of the action space. We use a supervised-to-bandit conversion on three XMC datasets to benchmark our POXM method against three competing methods: BanditNet, a previously applied partial matching pruning strategy, and a supervised learning baseline. Whereas BanditNet sometimes improves marginally over the logging policy, our experiments show that POXM systematically and significantly improves over all baselines.

  
Access Paper or Ask Questions

Sampler Design for Implicit Feedback Data by Noisy-label Robust Learning

Jun 28, 2020
Wenhui Yu, Zheng Qin

Implicit feedback data is extensively explored in recommendation as it is easy to collect and generally applicable. However, predicting users' preference on implicit feedback data is a challenging task since we can only observe positive (voted) samples and unvoted samples. It is difficult to distinguish between the negative samples and unlabeled positive samples from the unvoted ones. Existing works, such as Bayesian Personalized Ranking (BPR), sample unvoted items as negative samples uniformly, therefore suffer from a critical noisy-label issue. To address this gap, we design an adaptive sampler based on noisy-label robust learning for implicit feedback data. To formulate the issue, we first introduce Bayesian Point-wise Optimization (BPO) to learn a model, e.g., Matrix Factorization (MF), by maximum likelihood estimation. We predict users' preferences with the model and learn it by maximizing likelihood of observed data labels, i.e., a user prefers her positive samples and has no interests in her unvoted samples. However, in reality, a user may have interests in some of her unvoted samples, which are indeed positive samples mislabeled as negative ones. We then consider the risk of these noisy labels, and propose a Noisy-label Robust BPO (NBPO). NBPO also maximizes the observation likelihood while connects users' preference and observed labels by the likelihood of label flipping based on the Bayes' theorem. In NBPO, a user prefers her true positive samples and shows no interests in her true negative samples, hence the optimization quality is dramatically improved. Extensive experiments on two public real-world datasets show the significant improvement of our proposed optimization methods.

* SIGIR 2020 paper 
  
Access Paper or Ask Questions

Misspecified Linear Bandits

Apr 23, 2017
Avishek Ghosh, Sayak Ray Chowdhury, Aditya Gopalan

We consider the problem of online learning in misspecified linear stochastic multi-armed bandit problems. Regret guarantees for state-of-the-art linear bandit algorithms such as Optimism in the Face of Uncertainty Linear bandit (OFUL) hold under the assumption that the arms expected rewards are perfectly linear in their features. It is, however, of interest to investigate the impact of potential misspecification in linear bandit models, where the expected rewards are perturbed away from the linear subspace determined by the arms features. Although OFUL has recently been shown to be robust to relatively small deviations from linearity, we show that any linear bandit algorithm that enjoys optimal regret performance in the perfectly linear setting (e.g., OFUL) must suffer linear regret under a sparse additive perturbation of the linear model. In an attempt to overcome this negative result, we define a natural class of bandit models characterized by a non-sparse deviation from linearity. We argue that the OFUL algorithm can fail to achieve sublinear regret even under models that have non-sparse deviation.We finally develop a novel bandit algorithm, comprising a hypothesis test for linearity followed by a decision to use either the OFUL or Upper Confidence Bound (UCB) algorithm. For perfectly linear bandit models, the algorithm provably exhibits OFULs favorable regret performance, while for misspecified models satisfying the non-sparse deviation property, the algorithm avoids the linear regret phenomenon and falls back on UCBs sublinear regret scaling. Numerical experiments on synthetic data, and on recommendation data from the public Yahoo! Learning to Rank Challenge dataset, empirically support our findings.

* Thirty-First AAAI Conference on Artificial Intelligence, 2017 
  
Access Paper or Ask Questions

Triangle Graph Interest Network for Click-through Rate Prediction

Feb 06, 2022
Wensen Jiang, Yizhu Jiao, Qingqin Wang, Chuanming Liang, Lijie Guo, Yao Zhang, Zhijun Sun, Yun Xiong, Yangyong Zhu

Click-through rate prediction is a critical task in online advertising. Currently, many existing methods attempt to extract user potential interests from historical click behavior sequences. However, it is difficult to handle sparse user behaviors or broaden interest exploration. Recently, some researchers incorporate the item-item co-occurrence graph as an auxiliary. Due to the elusiveness of user interests, those works still fail to determine the real motivation of user click behaviors. Besides, those works are more biased towards popular or similar commodities. They lack an effective mechanism to break the diversity restrictions. In this paper, we point out two special properties of triangles in the item-item graphs for recommendation systems: Intra-triangle homophily and Inter-triangle heterophiy. Based on this, we propose a novel and effective framework named Triangle Graph Interest Network (TGIN). For each clicked item in user behavior sequences, we introduce the triangles in its neighborhood of the item-item graphs as a supplement. TGIN regards these triangles as the basic units of user interests, which provide the clues to capture the real motivation for a user clicking an item. We characterize every click behavior by aggregating the information of several interest units to alleviate the elusive motivation problem. The attention mechanism determines users' preference for different interest units. By selecting diverse and relative triangles, TGIN brings in novel and serendipitous items to expand exploration opportunities of user interests. Then, we aggregate the multi-level interests of historical behavior sequences to improve CTR prediction. Extensive experiments on both public and industrial datasets clearly verify the effectiveness of our framework.

* This paper is accepted by WSDM 2022. Source code: https://github.com/alibaba/tgin 
  
Access Paper or Ask Questions

Inductive Matrix Completion Using Graph Autoencoder

Aug 25, 2021
Wei Shen, Chuheng Zhang, Yun Tian, Liang Zeng, Xiaonan He, Wanchun Dou, Xiaolong Xu

Recently, the graph neural network (GNN) has shown great power in matrix completion by formulating a rating matrix as a bipartite graph and then predicting the link between the corresponding user and item nodes. The majority of GNN-based matrix completion methods are based on Graph Autoencoder (GAE), which considers the one-hot index as input, maps a user (or item) index to a learnable embedding, applies a GNN to learn the node-specific representations based on these learnable embeddings and finally aggregates the representations of the target users and its corresponding item nodes to predict missing links. However, without node content (i.e., side information) for training, the user (or item) specific representation can not be learned in the inductive setting, that is, a model trained on one group of users (or items) cannot adapt to new users (or items). To this end, we propose an inductive matrix completion method using GAE (IMC-GAE), which utilizes the GAE to learn both the user-specific (or item-specific) representation for personalized recommendation and local graph patterns for inductive matrix completion. Specifically, we design two informative node features and employ a layer-wise node dropout scheme in GAE to learn local graph patterns which can be generalized to unseen data. The main contribution of our paper is the capability to efficiently learn local graph patterns in GAE, with good scalability and superior expressiveness compared to previous GNN-based matrix completion methods. Furthermore, extensive experiments demonstrate that our model achieves state-of-the-art performance on several matrix completion benchmarks. Our official code is publicly available.

  
Access Paper or Ask Questions

A Survey on Optimal Transport for Machine Learning: Theory and Applications

Jun 03, 2021
Luis Caicedo Torres, Luiz Manella Pereira, M. Hadi Amini

Optimal Transport (OT) theory has seen an increasing amount of attention from the computer science community due to its potency and relevance in modeling and machine learning. It introduces means that serve as powerful ways to compare probability distributions with each other, as well as producing optimal mappings to minimize cost functions. In this survey, we present a brief introduction and history, a survey of previous work and propose directions of future study. We will begin by looking at the history of optimal transport and introducing the founders of this field. We then give a brief glance into the algorithms related to OT. Then, we will follow up with a mathematical formulation and the prerequisites to understand OT. These include Kantorovich duality, entropic regularization, KL Divergence, and Wassertein barycenters. Since OT is a computationally expensive problem, we then introduce the entropy-regularized version of computing optimal mappings, which allowed OT problems to become applicable in a wide range of machine learning problems. In fact, the methods generated from OT theory are competitive with the current state-of-the-art methods. We follow this up by breaking down research papers that focus on image processing, graph learning, neural architecture search, document representation, and domain adaptation. We close the paper with a small section on future research. Of the recommendations presented, three main problems are fundamental to allow OT to become widely applicable but rely strongly on its mathematical formulation and thus are hardest to answer. Since OT is a novel method, there is plenty of space for new research, and with more and more competitive methods (either on an accuracy level or computational speed level) being created, the future of applied optimal transport is bright as it has become pervasive in machine learning.

  
Access Paper or Ask Questions

Decentralized Online Learning: Take Benefits from Others' Data without Sharing Your Own to Track Global Trend

Mar 28, 2019
Yawei Zhao, Chen Yu, Peilin Zhao, Ji Liu

Decentralized Online Learning (online learning in decentralized networks) attracts more and more attention, since it is believed that Decentralized Online Learning can help the data providers cooperatively better solve their online problems without sharing their private data to a third party or other providers. Typically, the cooperation is achieved by letting the data providers exchange their models between neighbors, e.g., recommendation model. However, the best regret bound for a decentralized online learning algorithm is $\Ocal{n\sqrt{T}}$, where $n$ is the number of nodes (or users) and $T$ is the number of iterations. This is clearly insignificant since this bound can be achieved \emph{without} any communication in the networks. This reminds us to ask a fundamental question: \emph{Can people really get benefit from the decentralized online learning by exchanging information?} In this paper, we studied when and why the communication can help the decentralized online learning to reduce the regret. Specifically, each loss function is characterized by two components: the adversarial component and the stochastic component. Under this characterization, we show that decentralized online gradient (DOG) enjoys a regret bound $\Ocal{n\sqrt{T}G + \sqrt{nT}\sigma}$, where $G$ measures the magnitude of the adversarial component in the private data (or equivalently the local loss function) and $\sigma$ measures the randomness within the private data. This regret suggests that people can get benefits from the randomness in the private data by exchanging private information. Another important contribution of this paper is to consider the dynamic regret -- a more practical regret to track users' interest dynamics. Empirical studies are also conducted to validate our analysis.

* Second version: revise Assumption 1 (there is a typo in the first version); add experiments (see Figure 2); revise Algorithm 1 in a more clear way 
  
Access Paper or Ask Questions
<<
>>