Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Online Categorical Subspace Learning for Sketching Big Data with Misses

Sep 27, 2016
Yanning Shen, Morteza Mardani, Georgios B. Giannakis

With the scale of data growing every day, reducing the dimensionality (a.k.a. sketching) of high-dimensional data has emerged as a task of paramount importance. Relevant issues to address in this context include the sheer volume of data that may consist of categorical samples, the typically streaming format of acquisition, and the possibly missing entries. To cope with these challenges, the present paper develops a novel categorical subspace learning approach to unravel the latent structure for three prominent categorical (bilinear) models, namely, Probit, Tobit, and Logit. The deterministic Probit and Tobit models treat data as quantized values of an analog-valued process lying in a low-dimensional subspace, while the probabilistic Logit model relies on low dimensionality of the data log-likelihood ratios. Leveraging the low intrinsic dimensionality of the sought models, a rank regularized maximum-likelihood estimator is devised, which is then solved recursively via alternating majorization-minimization to sketch high-dimensional categorical data `on the fly.' The resultant procedure alternates between sketching the new incomplete datum and refining the latent subspace, leading to lightweight first-order algorithms with highly parallelizable tasks per iteration. As an extra degree of freedom, the quantization thresholds are also learned jointly along with the subspace to enhance the predictive power of the sought models. Performance of the subspace iterates is analyzed for both infinite and finite data streams, where for the former asymptotic convergence to the stationary point set of the batch estimator is established, while for the latter sublinear regret bounds are derived for the empirical cost. Simulated tests with both synthetic and real-world datasets corroborate the merits of the novel schemes for real-time movie recommendation and chess-game classification.

* 13 pages 

  Access Paper or Ask Questions

Fairness Maximization among Offline Agents in Online-Matching Markets

Sep 26, 2021
Will Ma, Pan Xu, Yifan Xu

Matching markets involve heterogeneous agents (typically from two parties) who are paired for mutual benefit. During the last decade, matching markets have emerged and grown rapidly through the medium of the Internet. They have evolved into a new format, called Online Matching Markets (OMMs), with examples ranging from crowdsourcing to online recommendations to ridesharing. There are two features distinguishing OMMs from traditional matching markets. One is the dynamic arrival of one side of the market: we refer to these as online agents while the rest are offline agents. Examples of online and offline agents include keywords (online) and sponsors (offline) in Google Advertising; workers (online) and tasks (offline) in Amazon Mechanical Turk (AMT); riders (online) and drivers (offline when restricted to a short time window) in ridesharing. The second distinguishing feature of OMMs is the real-time decision-making element. However, studies have shown that the algorithms making decisions in these OMMs leave disparities in the match rates of offline agents. For example, tasks in neighborhoods of low socioeconomic status rarely get matched to gig workers, and drivers of certain races/genders get discriminated against in matchmaking. In this paper, we propose online matching algorithms which optimize for either individual or group-level fairness among offline agents in OMMs. We present two linear-programming (LP) based sampling algorithms, which achieve online competitive ratios at least 0.725 for individual fairness maximization (IFM) and 0.719 for group fairness maximization (GFM), respectively. We conduct extensive numerical experiments and results show that our boosted version of sampling algorithms are not only conceptually easy to implement but also highly effective in practical instances of fairness-maximization-related models.

* Accepted in Conference on Web and Internet Economics (WINE), 2021 

  Access Paper or Ask Questions

Over a Decade of Social Opinion Mining

Dec 05, 2020
Keith Cortis, Brian Davis

Social media popularity and importance is on the increase, due to people using it for various types of social interaction across multiple channels. This social interaction by online users includes submission of feedback, opinions and recommendations about various individuals, entities, topics, and events. This systematic review focuses on the evolving research area of Social Opinion Mining, tasked with the identification of multiple opinion dimensions, such as subjectivity, sentiment polarity, emotion, affect, sarcasm and irony, from user-generated content represented across multiple social media platforms and in various media formats, like text, image, video and audio. Therefore, through Social Opinion Mining, natural language can be understood in terms of the different opinion dimensions, as expressed by humans. This contributes towards the evolution of Artificial Intelligence, which in turn helps the advancement of several real-world use cases, such as customer service and decision making. A thorough systematic review was carried out on Social Opinion Mining research which totals 485 studies and spans a period of twelve years between 2007 and 2018. The in-depth analysis focuses on the social media platforms, techniques, social datasets, language, modality, tools and technologies, natural language processing tasks and other aspects derived from the published studies. Such multi-source information fusion plays a fundamental role in mining of people's social opinions from social media platforms. These can be utilised in many application areas, ranging from marketing, advertising and sales for product/service management, and in multiple domains and industries, such as politics, technology, finance, healthcare, sports and government. Future research directions are presented, whereas further research and development has the potential of leaving a wider academic and societal impact.

* 159 pages, 4 figures 

  Access Paper or Ask Questions

Self-harm: detection and support on Twitter

Apr 01, 2021
Muhammad Abubakar Alhassan, Isa Inuwa-Dutse, Bello Shehu Bello, Diane Pennington

Since the advent of online social media platforms such as Twitter and Facebook, useful health-related studies have been conducted using the information posted by online participants. Personal health-related issues such as mental health, self-harm and depression have been studied because users often share their stories on such platforms. Online users resort to sharing because the empathy and support from online communities are crucial in helping the affected individuals. A preliminary analysis shows how contents related to non-suicidal self-injury (NSSI) proliferate on Twitter. Thus, we use Twitter to collect relevant data, analyse, and proffer ways of supporting users prone to NSSI behaviour. Our approach utilises a custom crawler to retrieve relevant tweets from self-reporting users and relevant organisations interested in combating self-harm. Through textual analysis, we identify six major categories of self-harming users consisting of inflicted, anti-self-harm, support seekers, recovered, pro-self-harm and at risk. The inflicted category dominates the collection. From an engagement perspective, we show how online users respond to the information posted by self-harm support organisations on Twitter. By noting the most engaged organisations, we apply a useful technique to uncover the organisations' strategy. The online participants show a strong inclination towards online posts associated with mental health related attributes. Our study is based on the premise that social media can be used as a tool to support proactive measures to ease the negative impact of self-harm. Consequently, we proffer ways to prevent potential users from engaging in self-harm and support affected users through a set of recommendations. To support further research, the dataset will be made available for interested researchers.

* 11 pages, 6 figures, 2 tables, conference paper 

  Access Paper or Ask Questions

Distributed Application of Guideline-Based Decision Support through Mobile Devices: Implementation and Evaluation

Feb 22, 2021
Erez Shalom, Ayelet Goldstein, Elior Ariel, Moshe Sheinberger, Valerie Jones, Boris Van Schooten, Yuval Shahar

Traditionally Guideline(GL)based Decision Support Systems (DSSs) use a centralized infrastructure to generate recommendations to care providers. However, managing patients at home is preferable, reducing costs and empowering patients. We aimed to design, implement, and demonstrate the feasibility of a new architecture for a distributed DSS that provides patients with personalized, context-sensitive, evidence based guidance through their mobile device, and increases the robustness of the distributed application of the GL, while maintaining access to the patient longitudinal record and to an up to date evidence based GL repository. We have designed and implemented a novel projection and callback (PCB) model, in which small portions of the evidence based GL procedural knowledge, adapted to the patient preferences and to their current context, are projected from a central DSS server, to a local DSS on the patient mobile device that applies that knowledge. When appropriate, as defined by a temporal pattern within the projected plan, the local DSS calls back the central DSS, requesting further assistance, possibly another projection. Thus, the GL specification includes two levels: one for the central DSS, one for the local DSS. We successfully evaluated the PCB model within the MobiGuide EU project by managing Gestational Diabetes Mellitus patients in Spain, and Atrial Fibrillation patients in Italy. Significant differences exist between the two GL representations, suggesting additional ways to characterize GLs. Mean time between the central and local interactions was quite different for the two GLs: 3.95 days for gestational diabetes, 23.80 days for atrial fibrillation. Most interactions, 83%, were due to projections to the mDSS. Others were data notifications, mostly to change context. Robustness was demonstrated through successful recovery from multiple local DSS crashes.

* 8 Tables and 16 figures in the main text; two Appendices, one including 1 figure, the other including 3 figures 

  Access Paper or Ask Questions

TBD: Benchmarking and Analyzing Deep Neural Network Training

Apr 14, 2018
Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Amar Phanishayee, Bianca Schroeder, Gennady Pekhimenko

The recent popularity of deep neural networks (DNNs) has generated a lot of research interest in performing DNN-related computation efficiently. However, the primary focus is usually very narrow and limited to (i) inference -- i.e. how to efficiently execute already trained models and (ii) image classification networks as the primary benchmark for evaluation. Our primary goal in this work is to break this myopic view by (i) proposing a new benchmark for DNN training, called TBD (TBD is short for Training Benchmark for DNNs), that uses a representative set of DNN models that cover a wide range of machine learning applications: image classification, machine translation, speech recognition, object detection, adversarial networks, reinforcement learning, and (ii) by performing an extensive performance analysis of training these different applications on three major deep learning frameworks (TensorFlow, MXNet, CNTK) across different hardware configurations (single-GPU, multi-GPU, and multi-machine). TBD currently covers six major application domains and eight different state-of-the-art models. We present a new toolchain for performance analysis for these models that combines the targeted usage of existing performance analysis tools, careful selection of new and existing metrics and methodologies to analyze the results, and utilization of domain specific characteristics of DNN training. We also build a new set of tools for memory profiling in all three major frameworks; much needed tools that can finally shed some light on precisely how much memory is consumed by different data structures (weights, activations, gradients, workspace) in DNN training. By using our tools and methodologies, we make several important observations and recommendations on where the future research and optimization of DNN training should be focused.


  Access Paper or Ask Questions

EdNet: A Large-Scale Hierarchical Dataset in Education

Dec 06, 2019
Youngduck Choi, Youngnam Lee, Dongmin Shin, Junghyun Cho, Seoyon Park, Seewoo Lee, Jineon Baek, Byungsoo Kim, Youngjun Jang

With advances in Artificial Intelligence in Education (AIEd) and the ever-growing scale of Interactive Educational Systems (IESs), data-driven approach has become a common recipe for various tasks such as knowledge tracing and learning path recommendation. Unfortunately, collecting real students' interaction data is often challenging, which results in the lack of public large-scale benchmark dataset reflecting a wide variety of student behaviors in modern IESs. Although several datasets, such as ASSISTments, Junyi Academy, Synthetic and STATICS, are publicly available and widely used, they are not large enough to leverage the full potential of state-of-the-art data-driven models and limits the recorded behaviors to question-solving activities. To this end, we introduce EdNet, a large-scale hierarchical dataset of diverse student activities collected by Santa, a multi-platform self-study solution equipped with artificial intelligence tutoring system. EdNet contains 131,441,538 interactions from 784,309 students collected over more than 2 years, which is the largest among the ITS datasets released to the public so far. Unlike existing datasets, EdNet provides a wide variety of student actions ranging from question-solving to lecture consumption and item purchasing. Also, EdNet has a hierarchical structure where the student actions are divided into 4 different levels of abstractions. The features of EdNet are domain-agnostic, allowing EdNet to be extended to different domains easily. The dataset is publicly released under Creative Commons Attribution-NonCommercial 4.0 International license for research purposes. We plan to host challenges in multiple AIEd tasks with EdNet to provide a common ground for the fair comparison between different state of the art models and encourage the development of practical and effective methods.


  Access Paper or Ask Questions

Logo-2K+: A Large-Scale Logo Dataset for Scalable Logo Classification

Nov 11, 2019
Jing Wang, Weiqing Min, Sujuan Hou, Shengnan Ma, Yuanjie Zheng, Haishuai Wang, Shuqiang Jiang

Logo classification has gained increasing attention for its various applications, such as copyright infringement detection, product recommendation and contextual advertising. Compared with other types of object images, the real-world logo images have larger variety in logo appearance and more complexity in their background. Therefore, recognizing the logo from images is challenging. To support efforts towards scalable logo classification task, we have curated a dataset, Logo-2K+, a new large-scale publicly available real-world logo dataset with 2,341 categories and 167,140 images. Compared with existing popular logo datasets, such as FlickrLogos-32 and LOGO-Net, Logo-2K+ has more comprehensive coverage of logo categories and larger quantity of logo images. Moreover, we propose a Discriminative Region Navigation and Augmentation Network (DRNA-Net), which is capable of discovering more informative logo regions and augmenting these image regions for logo classification. DRNA-Net consists of four sub-networks: the navigator sub-network first selected informative logo-relevant regions guided by the teacher sub-network, which can evaluate its confidence belonging to the ground-truth logo class. The data augmentation sub-network then augments the selected regions via both region cropping and region dropping. Finally, the scrutinizer sub-network fuses features from augmented regions and the whole image for logo classification. Comprehensive experiments on Logo-2K+ and other three existing benchmark datasets demonstrate the effectiveness of proposed method. Logo-2K+ and the proposed strong baseline DRNA-Net are expected to further the development of scalable logo image recognition, and the Logo-2K+ dataset can be found at https://github.com/msn199959/Logo-2k-plus-Dataset.

* Accepted by AAAI2020 

  Access Paper or Ask Questions

Creating A Neural Pedagogical Agent by Jointly Learning to Review and Assess

Jul 01, 2019
Youngnam Lee, Youngduck Choi, Junghyun Cho, Alexander R. Fabbri, Hyunbin Loh, Chanyou Hwang, Yongku Lee, Sang-Wook Kim, Dragomir Radev

Machine learning plays an increasing role in intelligent tutoring systems as both the amount of data available and specialization among students grow. Nowadays, these systems are frequently deployed on mobile applications. Users on such mobile education platforms are dynamic, frequently being added, accessing the application with varying levels of focus, and changing while using the service. The education material itself, on the other hand, is often static and is an exhaustible resource whose use in tasks such as problem recommendation must be optimized. The ability to update user models with respect to educational material in real-time is thus essential; however, existing approaches require time-consuming re-training of user features whenever new data is added. In this paper, we introduce a neural pedagogical agent for real-time user modeling in the task of predicting user response correctness, a central task for mobile education applications. Our model, inspired by work in natural language processing on sequence modeling and machine translation, updates user features in real-time via bidirectional recurrent neural networks with an attention mechanism over embedded question-response pairs. We experiment on the mobile education application SantaTOEIC, which has 559k users, 66M response data points as well as a set of 10k study problems each expert-annotated with topic tags and gathered since 2016. Our model outperforms existing approaches over several metrics in predicting user response correctness, notably out-performing other methods on new users without large question-response histories. Additionally, our attention mechanism and annotated tag set allow us to create an interpretable education platform, with a smart review system that addresses the aforementioned issue of varied user attention and problem exhaustion.

* 9 pages, 9 figures, 7 tables 

  Access Paper or Ask Questions

<<
427
428
429
430
431
432
433
434
435
436
437
438
439
>>